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Motivation

Original motivation: extreme-mass-ratio inspirals (EMRIs)

dissipating orbit

@ stellar-mass neutron star or black
hole orbits supermassive black hole

@ m emits gravitational radiation,
loses energy, spirals into M

e

conservative orbit

@ waveforms carry very precise information about strong-field
dynamics and geometry of spacetime near black hole

@ need very accurate model of motion for ~ M /m ~ 10°
orbits—self-force theory
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Motivation

Self-force's place in the two-body problem

Binary parameter space

Besides modeling EMRIs,

o
self-force can improve models of

T ground-based-detector sources
c . .
S @ determine high-order
g : ;
g ; post-Newtonian parameters
n i . .

: _ o calibrate Effective One

i Perturbation theory, Body theory

Numerical Relativity . self-force
0 .
1 Mass ratio —» @

[Leor Barack]

Also, self-force has surprisingly large domain of validity [Le Tiec et al]
= can directly model IMRIs (and even similar-mass binaries?)
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Point particle
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© Motion of a point particle
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Point particle
Point particle picture

Linearized theory

@ treat m as point particle, with
stress-energy THY ~ md>(zP — 2P) time

@ write total metric as g, + . !
(e.g., guv is metric of M,
hy is created by m)

o
@ approximate Einstein equation 2(r)

Guvlg + h] = 87 T, with
linearized EFE 5 G [h] = 8r T

<

part of perturbation propagates o
slower than light
@ light “cone” bends

.". by, depends on past history
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Point particle

Self-force: geodesic motion in an effective metric

M iSaTaQuWa equation [Mino,Sasaki, Tanaka; Quinn & Wald]
@ nonlocal tail acts as potential, exerts force F* ~ mV*tail

@ tail isn't nice: non-differentiable, not a solution to a field equation

Ge eralized equivalence principle [Detweiler &Whiting]
1 S(1 R(1
h((w) = h,”(, ) + h,”E )

@ local field near particle split into two:
o KSY ~ 2 1 O(r); local bound field of particle

h,“gl) ~ tail + local terms; smooth solution to source-free EFE
R(1)

@ motion is geodesic in effective metric g,, + huv

2

body's field hqp singular field hfﬂ regular field hff’ﬂ
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Extended object

Outline

© Motion of a small extended object
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Extended object

A small extended object moving through spacetime

Fundamental question
how does an object’s own gravitational field affect its motion?

Regime: small object body of mass manifold M

0 - time
@ examine spacetime
(M,g,,) containing
object of mass m and
external lengthscales R
@ seek representation of
object’'s motion when its

mass and size are < R |
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Extended object

Pe rtu rbative deSCI’i ption [Mino, Sasaki, Tanaka; Quinn & Wald; Detweiler & Whiting; Gralla & Wald; Pound; Harte]

@ treat object as source of perturbation of external background
spacetime (Mg, g, ):

S = Guv + ehl(ﬁ) + thﬁ) +...

@ ¢ counts powers of m
@ assume object is compact, so as m — 0, linear size — 0 at same rate

o seek representation of motion in (Mg, g,.)

diffeomorphism

//\

time

Body in exact spacetime Representation of motion
in external spacetime
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Extended object

Challenges in applying perturbation theory

Multiple time scales in binary
@ orbital period (~ M)
e time over which inspiral occurs (~ M?/m)

Multiple length scales

@ near small object: scale of object's size (~ m)

@ everywhere else: scale of external universe (~ M)

Identifying object’s position, spin, higher moments

@ point particle not valid in nonlinear field theory such as GR

@ how do we capture bulk parameters without worrying about details
of object’s composition?

@ how do we best represent the small object’s bulk motion (e.g.,
identify its “center")?
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Extended object

Long time scales: self-consistent approximation

Worldline

time
rather than find small
corrections to Y
zeroth-order motion, Mg
seek worldline (7, €) /70
that tracks object's

bulk motion

Self-consistent expansion
@ since h,, depends on v, can't expand h,, in regular power series
without also expanding v
@ allow v to depend on € and assume expansion of form

guu(xv 6) = guu(z) =+ huu(xv €5 7)
= guv(2) + €hl)(z;7) + E€RE (z;79) + ...
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Extended object
Small length scales: matched asymptotic expansions

)
T,
o define buffer region by
mILr<K<R m
@ because m < r, can treat inner region
mass as small perturbation (r~m)
of external background buffer
@ because r < R, can extract region
inf_ormation about small external universe (r ~ M)
object
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Extended object

Matched asymptotic expansions: the inner expansion

Zoom in on object

@ use scaled coords 7 ~ /€ to keep size of object fixed, send other
distances to infinity as e — 0

@ unperturbed object defines background spacetime g7, in inner
expansion

@ buffer region at asymptotic infinity » > m
= can define multipole moments without integrals over object

diffeomorphism 1))
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Extended object

Position at first order: self-consistent definition

Mass dipole about ~
We want to find worldline  for which M* =0

A 2 @ work in coordinates
centered on
unspecified

@ calculate mass
dipole M* of inner
background g7,

o first-order
acceleration of v:
whatever ensures
M* =0

® >
0 r
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Exten object

Position in self-consistent expansion (continued)

Enforce a relationship between the expansions

...to define a worldline for all time, even for black hole

@ in buffer region in Mg, write
metric in coordinates centered
on 7y

@ make object at “center” of
coordinates, in that its mass
dipole vanishes in M

Adam Pound Introduction to gravitational self-force
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of motion

Outline

@ Equation of motion at first and second order
@ First-order equation of motion
@ Second-order equation of motion
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EOM Fi

Solving the EFE in buffer region

Expansion for small r

@ in coordinates centered on +, allow all negative powers of 7 in hfﬁ,)

@ but inner expansion must not have negative powers of ¢
: soonp(n) o e e" 1
= most negative power of 7 in €"hy,, is & = =

rn enyn Fn

1
(n) _ —n) | p—ntlp(n—n+l) | —n+2} (n,—n+2)
h,];_rnhf]; W il g e 2pnnt2)

Information from inner expansion

@ 1/7™ terms arise from asymptotic expansion of zeroth-order
background in inner expansion

= h,(ﬁ,’_") is determined by multipole moments of isolated object
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EOM Fi

Form of solution in buffer region

hat appears in the solution?

@ put expansion into nth-order wave equation, solve order by order in r

@ expand each h&?,’p) in spherical harmonics (wrt angles on sphere
around r = 0)

@ given a worldline v, the solution at all orders is fully characterized by
object’s multipole moments (and corrections thereto): ~ :Z—ini
smooth solutions to vacuum wave equation: ~ ¢ Y*™

@ everything else made of (linear or nonlinear) combinations of the

above

Self field and regular field

@ multipole moments define hﬁl(,"); interpret as bound field of object

@ smooth homogeneous solutions define hg,,(n); free radiation,
determined by global boundary conditions
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First-order equation of motion

Outline
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EOM First-order equation of motion Secc er equation of motion

First and second order solutions

o 1) = HSSD + Al
° h[fz(/l) ~ 1/7 + O(r°) defined by mass monopole m

° hflfl) is undetermined homogenous solution regular at 7 = 0

@ evolution equations: 7 = 0 and aé‘o) =0

(where % = aéLO) + eaf‘l) +...)

o h®) — pS@ 4 @

o his? ~1/r2 + O(1/r) defined by
monopole correction dm
mass dipole M* (set to zero)
spin dipole S*

e evolution equations: §# =0, dm = ..., and aé‘l) = 0.
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EOM First-order equation of motion er equation of motion

Equation of motion

MiSaTaQuWa-Mathisson-Papapetrou equation

[ « R(1 1 o
afyy = =5 (97 + uu )<2h66(v) /3(;6)) uwuY + 5 R gy’ §7°

o self-force (due to regular field) + Papapetrou spin-force
e together with 70 = 0 and S =0
@ through order ¢, small object moves as a test body in g, + hfy
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Second-order equation of motion

Outline

© Motivation

© Motion of a point particle

© Motion of a small extended object

@ Equation of motion at first and second order
@ Second-order equation of motion

© Computing the field

@ Modeling binaries (i.e., concrete results)
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EOM on Second-order equation of motion

Why second order?

Modeling EMRIs

o inspiral occurs very slowly, on time scale t ~ 1/m

@ neglecting second-order self-force leads to error in acceleration
da* ~ m?
= error in position §z* ~ m?t?

= after time ¢ ~ 1/m, error §z* ~ 1

*. accurately describing orbital evolution requires second-order force

<

Modeling IMRIs and similar-mass binaries

@ second-order self-force should yield highly accurate model for IMRIs

o will fix terms quadratic in mass in post-Newtonian and Effective One
Body theory

A\
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on  Second-order equation of motion

Position at second order: mass-centered gauges

@ mass dipole moment defined for asymptotically flat spacetimes

@ beyond zeroth order, inner expansion is not asymptotically flat

v

e find gauge in which field is manifestly mass-centered on ~y

@ define position in other gauges by referring to transformation to that
mass-centered gauge

Adam Pound Introduction to gravitational self-force
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EOM First-order equation of motion Second-order equation of motion

Position at second order s

tA zH .
@ start In gauge
mass-centered on z*
m @ demand that
AzH transformation to

practical (e.g., Lorenz)
gauge does not move z*

@ i.e., insist Azt =0

@ ensures worldline in the
two gauges is the same
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otion Second-order equation of motion

Self-consistent equation of motion o

Neglecting object’s spin and quadrupole moment,

D2+ 1

dr? 5(
@ here hR = ehﬂ,,l) + 2h

g + utu”) (g,,p — h,f{p) (hg)\ - 2hp0 )\) uut + 0(e®)

Generalized equivalence principle

o M satisfies geodesic equation in g, + hf}y

o recall: here g, + h%, is a “physical” field in the sense of satisfying

vacuum EFE

(N7

@ extends results of Detweiler-Whiting to second order
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Outline

© Computing the field
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Effective interior metric

From self-field to singular field

o hij, and hY, derived only in buffer region
@ simply extend them to all 7 > 0 (and r = 0, for hll}l,)
@ does not change field in buffer region or beyond

y A 4

full metric g, "self field" hfw effective metric g, + h}fu
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Effective interior metric

From self-field to singular field

o hij, and hY, derived only in buffer region
@ simply extend them to all 7 > 0 (and r = 0, for hll}l,)
@ does not change field in buffer region or beyond

effective metric g, + hi,

full metric
8w singular field A5

pv
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Obtaining global solution

Puncture/effective source scheme

o define A" as small-r expansion of hﬁy truncated at finite order in r

(17

e PR — P o pR
o define h,;, = hy, — by, ~ hy,

out here, solve
§G 1] = —82GH [h%y)]

in here, solve —)0

5G] = —62GH (0] — G (Wi

@ to calculate effective metric “inside” object and full metric
everywhere else, all you need is hSV found in buffer region
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Field
Particles and punctures

A particle at linear order

can show that the linear field 4!  is identical to one sourced by a point

ny
mass m moving on vy

= exactly recover the point particle picture

A puncture at any order

the field outside the object, and the object’s bulk motion, can be
computed by replacing the object with a puncture equipped with a set of
multipole moments

= generalizes the idea of a point particle

(A note on “regularization”: we never introduce divergent quantities that
have to be regularized—every quantity is finite at every step of every
calculation)
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Modeling binaries EMRIs Other bir
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@ Other binaries
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Modeling binaries EMRIs Other bin

Geodesics in Kerr

@ geodesic characterized by three
constants of motion:
energy E
angular momentum L,
Carter constant @), related to
orbital inclination

[Steve Drasco]

e E, L,, Q related to frequencies
of r, ¢, and 6 motion

@ resonances occur when two
frequencies have a rational ratio

[Steve Drasco]
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35/43



Modeling binaries EMRIs Other bin

Hierarchy of self-force models e & Fumsean

@ when self-force is accounted for, E, L., and @ evolve with time

. . . 2 . .
@ on an inspiral timescale ¢ ~ % the phase of the gravitational wave

has an expansion
M 2
o= |on+ 3701+ 033 )|

@ a model that gets ¢ right is probably enough for signal detection in
many cases

@ a model that gets both ¢y and ¢; is enough for parameter extraction

@ passage through resonances complicates the expansion, but
post-adiabatic requirements are unaltered
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Modeling binaries EMRIs Other binaries

Hierarchy of self-force models e & Fumsean

Adiabatic order

, E, L,, and @ evolve with time

determined by
e averaged dissipative piece of F}'

, the phase of the gravitational wave

L'/]M_\’ m m?
o= + T+ o(MQ)}

@ a model that gets ¢ right is probably enough for signal detection in
many cases

@ a model that gets both ¢y and ¢; is enough for parameter extraction

@ passage through resonances complicates the expansion, but
post-adiabatic requirements are unaltered
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Modeling binaries EMRIs Other binaries

Hierarchy of self-force models e & Fumsean

Post-adiabatic order

Adiabatic order determined by

e averaged dissipative piece of F}'
determined by | @ conservative piece of FY’
e averaged dissipative piece of F}' e oscillatory dissipative piece of F}'

N
¢:m++oM2

@ a model that gets ¢ right is probably enough for signal detection in
many cases

@ a model that gets both ¢y and ¢; is enough for parameter extraction

@ passage through resonances complicates the expansion, but
post-adiabatic requirements are unaltered
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Modeling binaries EMRIs Other bir

Orbital evolution

@ adiabatic evolution schemes in Kerr already devised and
Imp|emented (mOdu|0 reSOnanceS) [Mino, Drasco et al, Sago et al]

@ also, complete
inspirals simulated in
Schwarzschild
including full F%*

@ should soon be
possible in Kerr

N e but still need F}' for
I S S accurate

of----

L post-adiabatic
T inspiral

[Warburton et al 2011, image courtesy of Warburton]
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Modeling binaries EMRIs Other binaries

Improving other binary models

PN and EOB models have been improved using data for conservative
effects of the self-force (computed by “turning off” dissipation)

Binary parameter space
@ orbital precession [garack et al]
@ |SCO shift (garack and Sago, 1soyama et al.]

@ Detweiler’s redshift invariant
4t on circular orbits petweier,

drh
Shah et al., Dolan and Barack]

o averaged redshift () on
eccentric orbits (Barack et al, van de

Perturbation theory,

Numerical Relativity self-force

Meent & Shah] 0
1 Mass ratio —» a0

[Leor Barack]
@ Spin precession [polan et al]

o quadl’up0|al’ and OCtup0|ar Self—t|des [Dolan et al, Damour and Bini]
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Modeling binaries EMRIs Other binaries

Using SF to directly model other binaries

Comparisons for equal-mass binaries

Orbital precession Gravitational binding energy
‘ o A
1.5 ® -0.04 - EOB, " Schw
L . b 4 ~
Q [ - r
LS L 0.06 |- ]
G [ — E GSF___ 0,060 e
L - R 008 F /"‘ 70056;
s [ P2 E ,"0 -0.0725—
120 = 0.10F NR E
} [/ 0078
0.01F B v
N E - ] -0.12
>~ OoF === = " 3 0.0003 | GSI
M L \ ] <m E o
(0-001}\ L L L L L L L L L L L L { UO 0? d . -
0.01 0.02 0.03 000035 3PN‘ - ‘/‘"l—/‘O‘H‘ e
(m 4 M)Qy 3775258 e s
[Le Tiec et al] J

M . " . m mM
@ SF results use “mass symmetrized” model: M T Gt dDZ

@ with mass-symmetrization, second-order self-force might be able to
directly model even similar-mass binaries
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Modeling binaries EN ther binaries

Calculations performed as of 2

Adiabatic | 1st order | 2nd order

v

circular

Schwarz.
generic \/
circular

Kerr generic

(w/o resonances)

generic
(w/ resonances)
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Modeling binaries EMRIs Other binaries

Calculations performed as of 2012

Adiabatic | 1st order | 2nd order

circular \/ \/

Schwarz.
generic \/ \/
circular \/ \/
Kerr generic
(w/o resonances) \/

generic
(w/ resonances)
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Modeling binaries EN ther binaries

Calculations performed as of 2

Adiabatic | 1st order | 2nd order

circular \/ \/ underway
Schwarz.

generic \/ \/

circular \/ \/
Kerr generic

(w/o resonances) \/ underway

generic

(w/ resonances) | underway | underway

Adam Pound Introduction to gravitational self-force 41/43



Modeling binaries EMRIs Other binaries

Calculations performed as of ??77?

Adiabatic | 1st order | 2nd order

circular \/ \/ underway
Schwarz.

generic \/ \/

circular \/ \/
Kerr generic

(w/o resonances) \/ underway

generic

(w/ resonances) underway | underway | holy grail
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Conclusion

Formalism: motion of a small object
@ in principle, no obstacle to going to arbitrary order

@ through second order in its mass, a nonspinning compact object
moves on a geodesic in a vacuum geometry g, + hﬁy

° hf}l, can be computed by replacing the object with an analytically

known puncture

Status of binary modeling

@ wealth of numerical results at first order

e calculations at second order are underway [Wednesday talks]

@ second-order equations have so far neglected spin and quadrupole
moment of object—need to include them through second order for
accurate modeling
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Modeling binaries =) Other binaries

Using the local self-force in evolution

Gralla-Wald Geodesic-source Self-consistent
o source of AL, + osculation [Pound]
moves on Kerr @ at each ¢, source @ source moves on
geodesic 2 moves on the accelerated
o calculate shift §z# instantaneously orbit z#
relative to 2} tingential geodesic o only been
@ error grows large .t implemented in

with time e error ~ (m/M)? scalar field model

zH
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