Introduction to gravitational self-force

Adam Pound

University of Southampton

29 June 2015

Outline

- 2 Motion of a point particle
- 3 Motion of a small extended object
- Equation of motion at first and second order
 First-order equation of motion
 - Second-order equation of motion
- 6 Computing the field
- 6 Modeling binaries (i.e., concrete results)
 - EMRIs
 - Other binaries

Outline

1 Motivation

- 2 Motion of a point particle
- 3 Motion of a small extended object
- Equation of motion at first and second order
 First-order equation of motion
 Second order equation of motion
 - Second-order equation of motion

5 Computing the field

- 6 Modeling binaries (i.e., concrete results)
 - EMRIs
 - Other binaries

Original motivation: extreme-mass-ratio inspirals (EMRIs)

- stellar-mass neutron star or black hole orbits supermassive black hole
- *m* emits gravitational radiation, loses energy, spirals into *M*

- waveforms carry very precise information about strong-field dynamics and geometry of spacetime near black hole
- need very accurate model of motion for $\sim M/m \sim 10^5$ orbits—self-force theory

Self-force's place in the two-body problem

Besides modeling EMRIs, self-force can improve models of ground-based-detector sources

- determine high-order post-Newtonian parameters
- calibrate Effective One Body theory

Also, self-force has surprisingly large domain of validity [Le Tiec et al] \Rightarrow can *directly* model IMRIs (and even similar-mass binaries?)

Outline

Motivation

- 2 Motion of a point particle
- 3 Motion of a small extended object
- Equation of motion at first and second order
 First-order equation of motion
 - Second-order equation of motion

5 Computing the field

- 6 Modeling binaries (i.e., concrete results)
 - EMRIs
 - Other binaries

Linearized theory

- treat m as point particle, with stress-energy $T^{\mu\nu}\sim m\delta^3(x^\rho-z^\rho)$
- write total metric as $g_{\mu\nu} + h_{\mu\nu}$ (e.g., $g_{\mu\nu}$ is metric of M, $h_{\mu\nu}$ is created by m)
- approximate Einstein equation $G_{\mu\nu}[g+h] = 8\pi T_{\mu\nu}$ with linearized EFE $\delta G^{\mu\nu}[h] = 8\pi T^{\mu\nu}$

Tail

- part of perturbation propagates slower than light
- light "cone" bends
 - $\therefore h_{\mu
 u}$ depends on past history

space

Linearized theory

- treat m as point particle, with stress-energy $T^{\mu\nu}\sim m\delta^3(x^\rho-z^\rho)$
- write total metric as $g_{\mu\nu} + h_{\mu\nu}$ (e.g., $g_{\mu\nu}$ is metric of M, $h_{\mu\nu}$ is created by m)
- approximate Einstein equation $G_{\mu\nu}[g+h] = 8\pi T_{\mu\nu}$ with linearized EFE $\delta G^{\mu\nu}[h] = 8\pi T^{\mu\nu}$

- part of perturbation propagates slower than light
- light "cone" bends
 - $\therefore h_{\mu
 u}$ depends on past history

Linearized theory

- treat m as point particle, with stress-energy $T^{\mu\nu}\sim m\delta^3(x^\rho-z^\rho)$
- write total metric as $g_{\mu\nu} + h_{\mu\nu}$ (e.g., $g_{\mu\nu}$ is metric of M, $h_{\mu\nu}$ is created by m)
- approximate Einstein equation $G_{\mu\nu}[g+h] = 8\pi T_{\mu\nu}$ with linearized EFE $\delta G^{\mu\nu}[h] = 8\pi T^{\mu\nu}$

time x^{μ} $z^{\mu}(\tau)$ space

- part of perturbation propagates slower than light
- light "cone" bends
 - $\therefore h_{\mu
 u}$ depends on past history

Linearized theory

- treat m as point particle, with stress-energy $T^{\mu\nu}\sim m\delta^3(x^\rho-z^\rho)$
- write total metric as $g_{\mu\nu} + h_{\mu\nu}$ (e.g., $g_{\mu\nu}$ is metric of M, $h_{\mu\nu}$ is created by m)
- approximate Einstein equation $G_{\mu\nu}[g+h] = 8\pi T_{\mu\nu}$ with linearized EFE $\delta G^{\mu\nu}[h] = 8\pi T^{\mu\nu}$

- part of perturbation propagates slower than light
- light "cone" bends
 - $\therefore h_{\mu
 u}$ depends on past history

Linearized theory

- treat m as point particle, with stress-energy $T^{\mu\nu}\sim m\delta^3(x^\rho-z^\rho)$
- write total metric as $g_{\mu\nu} + h_{\mu\nu}$ (e.g., $g_{\mu\nu}$ is metric of M, $h_{\mu\nu}$ is created by m)
- approximate Einstein equation $G_{\mu\nu}[g+h] = 8\pi T_{\mu\nu}$ with linearized EFE $\delta G^{\mu\nu}[h] = 8\pi T^{\mu\nu}$

- part of perturbation propagates slower than light
- light "cone" bends
 - $\therefore h_{\mu
 u}$ depends on past history

Linearized theory

- treat m as point particle, with stress-energy $T^{\mu\nu}\sim m\delta^3(x^\rho-z^\rho)$
- write total metric as $g_{\mu\nu} + h_{\mu\nu}$ (e.g., $g_{\mu\nu}$ is metric of M, $h_{\mu\nu}$ is created by m)
- approximate Einstein equation $G_{\mu\nu}[g+h] = 8\pi T_{\mu\nu}$ with linearized EFE $\delta G^{\mu\nu}[h] = 8\pi T^{\mu\nu}$

- part of perturbation propagates slower than light
- light "cone" bends
 - $\therefore h_{\mu
 u}$ depends on past history

Linearized theory

- treat m as point particle, with stress-energy $T^{\mu\nu}\sim m\delta^3(x^\rho-z^\rho)$
- write total metric as $g_{\mu\nu} + h_{\mu\nu}$ (e.g., $g_{\mu\nu}$ is metric of M, $h_{\mu\nu}$ is created by m)
- approximate Einstein equation $G_{\mu\nu}[g+h] = 8\pi T_{\mu\nu}$ with linearized EFE $\delta G^{\mu\nu}[h] = 8\pi T^{\mu\nu}$

- part of perturbation propagates slower than light
- light "cone" bends
 - $\therefore h_{\mu
 u}$ depends on past history

Linearized theory

- treat m as point particle, with stress-energy $T^{\mu\nu}\sim m\delta^3(x^\rho-z^\rho)$
- write total metric as $g_{\mu\nu} + h_{\mu\nu}$ (e.g., $g_{\mu\nu}$ is metric of M, $h_{\mu\nu}$ is created by m)
- approximate Einstein equation $G_{\mu\nu}[g+h] = 8\pi T_{\mu\nu}$ with linearized EFE $\delta G^{\mu\nu}[h] = 8\pi T^{\mu\nu}$

- part of perturbation propagates slower than light
- light "cone" bends
 - $\therefore h_{\mu
 u}$ depends on past history

Linearized theory

- treat m as point particle, with stress-energy $T^{\mu\nu}\sim m\delta^3(x^\rho-z^\rho)$
- write total metric as $g_{\mu\nu} + h_{\mu\nu}$ (e.g., $g_{\mu\nu}$ is metric of M, $h_{\mu\nu}$ is created by m)
- approximate Einstein equation $G_{\mu\nu}[g+h] = 8\pi T_{\mu\nu}$ with linearized EFE $\delta G^{\mu\nu}[h] = 8\pi T^{\mu\nu}$

- part of perturbation propagates slower than light
- light "cone" bends
 - $\therefore h_{\mu
 u}$ depends on past history

Self-force: geodesic motion in an effective metric

MiSaTaQuWa equation [Mino, Sasaki, Tanaka; Quinn & Wald]

- nonlocal tail acts as potential, exerts force $F^{\mu} \sim m \nabla^{\mu} {
 m tail}$
- tail isn't nice: non-differentiable, not a solution to a field equation

Generalized equivalence principle [Detweiler & Whiting]

- local field near particle split into two: $h^{(1)}_{\mu\nu}=h^{\rm S(1)}_{\mu\nu}+h^{\rm R(1)}_{\mu\nu}$
- $h_{\mu\nu}^{S(1)} \sim \frac{m}{r} + O(r^0)$; local bound field of particle
- $h_{\mu\nu}^{\rm R(1)} \sim {\rm tail} + {\rm local \ terms};$ smooth solution to source-free EFE
- motion is geodesic in effective metric $g_{\mu\nu} + h^{{
 m R}(1)}_{\mu\nu}$

Outline

Motivation

- 2 Motion of a point particle
- 3 Motion of a small extended object
- Equation of motion at first and second order
 First-order equation of motion
 Second order equation of motion
 - Second-order equation of motion

5 Computing the field

- 6 Modeling binaries (i.e., concrete results)
 - EMRIs
 - Other binaries

A small extended object moving through spacetime

Fundamental question

how does an object's own gravitational field affect its motion?

Regime: small object

- examine spacetime $(\mathcal{M}, \mathsf{g}_{\mu\nu})$ containing object of mass m and external lengthscales \mathcal{R}
- seek representation of object's motion when its mass and size are $\ll \mathcal{R}$

Perturbative description [Mino, Sasaki, Tanaka; Quinn & Wald; Detweiler & Whiting; Gralla & Wald; Pound; Harte]

 treat object as source of perturbation of external background spacetime $(\mathcal{M}_E, g_{\mu\nu})$:

$$g_{\mu\nu} = g_{\mu\nu} + \epsilon h^{(1)}_{\mu\nu} + \epsilon^2 h^{(2)}_{\mu\nu} + \dots$$

- ϵ counts powers of m
- assume object is compact, so as $m \to 0$, linear size $\to 0$ at same rate ۰
- seek representation of motion in $(\mathcal{M}_E, g_{\mu\nu})$

Challenges in applying perturbation theory

Multiple time scales in binary

- orbital period (~ M)
- time over which inspiral occurs ($\sim M^2/m$)

Multiple length scales

- near small object: scale of object's size ($\sim m$)
- ullet everywhere else: scale of external universe ($\sim M$)

Identifying object's position, spin, higher moments

- point particle not valid in nonlinear field theory such as GR
- how do we capture bulk parameters without worrying about details of object's composition?
- how do we best represent the small object's bulk motion (e.g., identify its "center")?

Long time scales: self-consistent approximation

Worldline

rather than find small corrections to zeroth-order motion, seek worldline $\gamma(\tau,\epsilon)$ that tracks object's bulk motion

Self-consistent expansion

- since $h_{\mu\nu}$ depends on $\gamma,$ can't expand $h_{\mu\nu}$ in regular power series without also expanding γ
- $\bullet\,$ allow γ to depend on $\epsilon\,$ and assume expansion of form

$$g_{\mu\nu}(x,\epsilon) = g_{\mu\nu}(x) + h_{\mu\nu}(x,\epsilon;\gamma) = g_{\mu\nu}(x) + \epsilon h_{\mu\nu}^{(1)}(x;\gamma) + \epsilon^2 h_{\mu\nu}^{(2)}(x;\gamma) + \dots$$

M

Small length scales: matched asymptotic expansions

• define buffer region by $m \ll r \ll \mathcal{R}$

- because m ≪ r, can treat mass as small perturbation of external background
- because r ≪ R, can extract information about small object

Matched asymptotic expansions: the inner expansion

Zoom in on object

- use scaled coords $\tilde{r}\sim r/\epsilon$ to keep size of object fixed, send other distances to infinity as $\epsilon\to 0$
- unperturbed object defines background spacetime $g_{I\mu\nu}$ in inner expansion
- buffer region at asymptotic infinity $r \gg m$ \Rightarrow can define multipole moments without integrals over object

Position at first order: self-consistent definition

Mass dipole about γ

We want to find worldline γ for which $M^{\mu}=0$

- work in coordinates centered on unspecified γ
- calculate mass dipole M^{μ} of inner background $g_{I\mu\nu}$
- first-order acceleration of γ : whatever ensures $M^{\mu} \equiv 0$

Position in self-consistent expansion (continued)

Enforce a relationship between the expansions

...to define a worldline for all time, even for black hole

Outline

Motivation

- 2 Motion of a point particle
- 3 Motion of a small extended object
- Equation of motion at first and second order
 First-order equation of motion
 - Second-order equation of motion

5 Computing the field

- 6 Modeling binaries (i.e., concrete results)
 - EMRIs
 - Other binaries

Solving the EFE in buffer region

Expansion for small $\ensuremath{\mathit{r}}$

- in coordinates centered on γ , allow all negative powers of r in $h^{(n)}_{\mu
 u}$
- $\bullet\,$ but inner expansion must not have negative powers of $\epsilon\,$
 - \Rightarrow most negative power of r in $\epsilon^n h_{\mu\nu}^{(n)}$ is $\frac{\epsilon^n}{r^n} = \frac{\epsilon^n}{\epsilon^n \tilde{r}^n} = \frac{1}{\tilde{r}^n}$

Therefore

$$h_{\mu\nu}^{(n)} = \frac{1}{r^n} h_{\mu\nu}^{(n,-n)} + r^{-n+1} h_{\mu\nu}^{(n,-n+1)} + r^{-n+2} h_{\mu\nu}^{(n,-n+2)} + \dots$$

Information from inner expansion

- $1/\tilde{r}^n$ terms arise from asymptotic expansion of zeroth-order background in inner expansion
 - $\Rightarrow h^{(n,-n)}_{\mu\nu}$ is determined by multipole moments of isolated object

Form of solution in buffer region

What appears in the solution?

- put expansion into nth-order wave equation, solve order by order in r
- expand each $h^{(n,p)}_{\mu\nu}$ in spherical harmonics (wrt angles on sphere around r=0)
- $\bullet\,$ given a worldline $\gamma,$ the solution at all orders is fully characterized by
 - **1** object's multipole moments (and corrections thereto): $\sim \frac{Y^{\ell m}}{r^{\ell+1}}$
 - 2 smooth solutions to vacuum wave equation: $\sim r^{\ell} Y^{\ell m}$
- everything else made of (linear or nonlinear) combinations of the above

Self field and regular field

- multipole moments define $h_{\mu
 u}^{{
 m S}(n)}$; interpret as bound field of object
- smooth homogeneous solutions define $h_{\mu\nu}^{{\rm R}(n)}$; free radiation, determined by global boundary conditions

Outline

Motivation

- 2 Motion of a point particle
- 3 Motion of a small extended object
- Equation of motion at first and second order
 First-order equation of motion
 Second-order equation of motion

5 Computing the field

6 Modeling binaries (i.e., concrete results)

- EMRIs
- Other binaries

First and second order solutions

First order

•
$$h_{\mu\nu}^{(1)} = h_{\mu\nu}^{S(1)} + h_{\mu\nu}^{R(1)}$$

- $h^{S(1)}_{\mu\nu} \sim 1/r + O(r^0)$ defined by mass monopole m
- $h^{R(1)}_{\mu\nu}$ is undetermined homogenous solution regular at r=0
- evolution equations: $\dot{m} = 0$ and $a^{\mu}_{(0)} = 0$

(where
$$\frac{D^2 z^{\mu}}{d\tau^2} = a^{\mu}_{(0)} + \epsilon a^{\mu}_{(1)} + \ldots$$
)

Second order

•
$$h_{\mu\nu}^{(2)} = h_{\mu\nu}^{S(2)} + h_{\mu\nu}^{R(2)}$$

•
$$h^{S(2)}_{\mu
u}\sim 1/r^2+O(1/r)$$
 defined by

- 1 monopole correction δm
- 2 mass dipole M^{μ} (set to zero)
- 3 spin dipole S^{μ}
- evolution equations: $\dot{S}^{\mu} = 0$, $\dot{\delta m} = \dots$, and $a^{\mu}_{(1)} = \dots$

Equation of motion

MiSaTaQuWa-Mathisson-Papapetrou equation

$$a^{\alpha}_{(1)} = -\frac{1}{2} \left(g^{\alpha \delta} + u^{\alpha} u^{\delta} \right) \left(2h^{R(1)}_{\delta \beta; \gamma} - h^{R(1)}_{\beta \gamma; \delta} \right) u^{\beta} u^{\gamma} + \frac{1}{2m} R^{\alpha}{}_{\beta \gamma \delta} u^{\beta} S^{\gamma \delta}$$

- self-force (due to regular field) + Papapetrou spin-force
- together with $\dot{m}=0$ and $\dot{S}^{\mu\nu}=0$
- through order ϵ , small object moves as a test body in $g_{\mu\nu} + h^R_{\mu\nu}$

Outline

Motivation

- 2 Motion of a point particle
- 3 Motion of a small extended object
- Equation of motion at first and second order
 First-order equation of motion
 - Second-order equation of motion

6 Computing the field

6 Modeling binaries (i.e., concrete results)

- EMRIs
- Other binaries

Why second order?

Modeling EMRIs

- ullet inspiral occurs very slowly, on time scale $t\sim 1/m$
- neglecting second-order self-force leads to error in acceleration $\delta a^{\mu} \sim m^2$
 - \Rightarrow error in position $\delta z^{\mu} \sim m^2 t^2$
 - \Rightarrow after time $t \sim 1/m$, error $\delta z^{\mu} \sim 1$
- \therefore accurately describing orbital evolution requires second-order force

Modeling IMRIs and similar-mass binaries

- second-order self-force should yield highly accurate model for IMRIs
- will fix terms quadratic in mass in post-Newtonian and Effective One Body theory

Position at second order: mass-centered gauges

Problem

- mass dipole moment defined for asymptotically flat spacetimes
- beyond zeroth order, inner expansion is not asymptotically flat

Solution

- $\bullet\,$ find gauge in which field is manifestly mass-centered on $\gamma\,$
- define position in other gauges by referring to transformation to that mass-centered gauge

Position at second order [Pound]

- start in gauge mass-centered on z^{μ}
- demand that transformation to practical (e.g., Lorenz) gauge does not move z^µ

• i.e., insist
$$\Delta z^{\mu} = 0$$

• ensures worldline in the two gauges is the same

Self-consistent equation of motion [Pound]

Neglecting object's spin and quadrupole moment,

$$\frac{D^2 z^{\mu}}{d\tau^2} = \frac{1}{2} \left(g^{\mu\nu} + u^{\mu} u^{\nu} \right) \left(g_{\nu}{}^{\rho} - h_{\nu}^{\mathrm{R}\,\rho} \right) \left(h_{\sigma\lambda;\rho}^{\mathrm{R}} - 2h_{\rho\sigma;\lambda}^{\mathrm{R}} \right) u^{\sigma} u^{\lambda} + O(\epsilon^3)$$

• here
$$h_{\mu\nu}^{\rm R} = \epsilon h_{\mu\nu}^{\rm R(1)} + \epsilon^2 h_{\mu\nu}^{\rm R(2)}$$

Generalized equivalence principle

- z^{μ} satisfies geodesic equation in $g_{\mu\nu} + h^{\rm R}_{\mu\nu}$
- \bullet recall: here $g_{\mu\nu}+h^{\rm R}_{\mu\nu}$ is a "physical" field in the sense of satisfying vacuum EFE
- extends results of Detweiler-Whiting to second order

Outline

Motivation

- 2 Motion of a point particle
- 3 Motion of a small extended object
- Equation of motion at first and second order
 First-order equation of motion
 - Second-order equation of motion

5 Computing the field

- 6 Modeling binaries (i.e., concrete results)
 - EMRIs
 - Other binaries

Effective interior metric

From self-field to singular field

- $h^{\rm S}_{\mu
 u}$ and $h^{\rm R}_{\mu
 u}$ derived only in buffer region
- simply extend them to all r > 0 (and r = 0, for $h_{\mu\nu}^{\rm R}$)
- does not change field in buffer region or beyond

Effective interior metric

From self-field to singular field

- $h^{\rm S}_{\mu
 u}$ and $h^{\rm R}_{\mu
 u}$ derived only in buffer region
- simply extend them to all r > 0 (and r = 0, for $h_{\mu\nu}^{\rm R}$)
- does not change field in buffer region or beyond

Effective interior metric

From self-field to singular field

- $h^{\rm S}_{\mu
 u}$ and $h^{\rm R}_{\mu
 u}$ derived only in buffer region
- simply extend them to all r > 0 (and r = 0, for $h_{\mu\nu}^{\rm R}$)
- does not change field in buffer region or beyond

Obtaining global solution

Puncture/effective source scheme

 \bullet define $h_{\mu\nu}^{\mathcal{P}}$ as small-r expansion of $h_{\mu\nu}^{\mathrm{S}}$ truncated at finite order in r

• define
$$h_{\mu\nu}^{\mathcal{R}} = h_{\mu\nu} - h_{\mu\nu}^{\mathcal{P}} \simeq h_{\mu\nu}^{\mathrm{R}}$$

The point...

• to calculate effective metric "inside" object and full metric everywhere else, all you need is $h^{\rm S}_{\mu\nu}$ found in buffer region

Obtaining global solution

Puncture/effective source scheme

 \bullet define $h_{\mu\nu}^{\mathcal{P}}$ as small-r expansion of $h_{\mu\nu}^{\mathrm{S}}$ truncated at finite order in r

• define
$$h_{\mu\nu}^{\mathcal{R}} = h_{\mu\nu} - h_{\mu\nu}^{\mathcal{P}} \simeq h_{\mu\nu}^{\mathrm{R}}$$

The point...

• to calculate effective metric "inside" object and full metric everywhere else, all you need is $h_{\mu\nu}^{S}$ found in buffer region

Particles and punctures

A particle at linear order

can show that the linear field $h^1_{\mu\nu}$ is identical to one sourced by a point mass m moving on γ

 \Rightarrow exactly recover the point particle picture

A puncture at any order

the field outside the object, and the object's bulk motion, can be computed by *replacing the object with a puncture equipped with a set of multipole moments*

 \Rightarrow generalizes the idea of a point particle

(A note on "regularization": we never introduce divergent quantities that have to be regularized—every quantity is finite at every step of every calculation)

Outline

Motivation

- 2 Motion of a point particle
- 3 Motion of a small extended object
- Equation of motion at first and second order
 First-order equation of motion
 Second order equation of motion
 - Second-order equation of motion

Computing the field

- 6 Modeling binaries (i.e., concrete results)
 - EMRIs
 - Other binaries

Outline

1 Motivation

- 2 Motion of a point particle
- 3 Motion of a small extended object

Equation of motion at first and second order
 First-order equation of motion

Second-order equation of motion

6 Computing the field

- Modeling binaries (i.e., concrete results)
 EMRIs
 - Other binaries

Geodesics in Kerr

[Steve Drasco]

- geodesic characterized by three constants of motion:
 - 1 energy E
 - **2** angular momentum L_z
 - **3** Carter constant *Q*, related to orbital inclination

- E, L_z , Q related to frequencies of r, ϕ , and θ motion
- resonances occur when two frequencies have a rational ratio

[Steve Drasco]

Hierarchy of self-force models [Hinderer & Flanagan]

- $\bullet\,$ when self-force is accounted for, $E,\,L_z,\,{\rm and}\,\,Q$ evolve with time
- \bullet on an inspiral timescale $t\sim \frac{M^2}{m},$ the phase of the gravitational wave has an expansion

$$\phi = \frac{M}{m} \left[\phi_0 + \frac{m}{M} \phi_1 + O\left(\frac{m^2}{M^2}\right) \right]$$

- $\bullet\,$ a model that gets ϕ_0 right is probably enough for signal detection in many cases
- a model that gets both ϕ_0 and ϕ_1 is enough for parameter extraction
- passage through resonances complicates the expansion, but post-adiabatic requirements are unaltered

Hierarchy of self-force models [Hinderer & Flanagan]

- $\bullet\,$ a model that gets ϕ_0 right is probably enough for signal detection in many cases
- a model that gets both ϕ_0 and ϕ_1 is enough for parameter extraction
- passage through resonances complicates the expansion, but post-adiabatic requirements are unaltered

Hierarchy of self-force models [Hinderer & Flanagan]

- $\bullet\,$ a model that gets ϕ_0 right is probably enough for signal detection in many cases
- a model that gets both ϕ_0 and ϕ_1 is enough for parameter extraction
- passage through resonances complicates the expansion, but post-adiabatic requirements are unaltered

Orbital evolution

 adiabatic evolution schemes in Kerr already devised and implemented (modulo resonances) [Mino, Drasco et al, Sago et al]

- also, complete inspirals simulated in Schwarzschild including full F₁^μ
- should soon be possible in Kerr
- but still need F_2^{μ} for accurate post-adiabatic inspiral

[Warburton et al 2011, image courtesy of Warburton]

Outline

Motivation

- 2 Motion of a point particle
- Motion of a small extended object
- 4 Equation of motion at first and second order First-order equation of motion
 - Second-order equation of motion

5 Computing the field

- 6 Modeling binaries (i.e., concrete results) EMRIs
 - Other binaries

Improving other binary models

PN and EOB models have been improved using data for *conservative* effects of the self-force (computed by "turning off" dissipation)

 orbital precession [Barack et al.]
 ISCO shift [Barack and Sago, Isoyama et al.]
 Detweiler's redshift invariant ^{dt}/_{dT^R} on circular orbits [Detweiler,

Shah et al., Dolan and Barack]

• averaged redshift $\left\langle \frac{dt}{d\tau^R} \right\rangle$ on eccentric orbits [Barack et al., van de Meent & Shah] Binary parameter space

[Leor Barack]

- spin precession [Dolan et al.]
- quadrupolar and octupolar self-tides [Dolan et al, Damour and Bini]

Using SF to *directly* model other binaries

- SF results use "mass symmetrized" model: $\frac{m}{M} \rightarrow \frac{mM}{(m+M)^2}$
- with mass-symmetrization, second-order self-force might be able to directly model even similar-mass binaries

		Adiabatic	1st order	2nd order
Schwarz.	circular	\checkmark		
	generic	>		
Kerr	circular			
	generic (w/o resonances)			
	generic (w/ resonances)			

		Adiabatic	1st order	2nd order
Schwarz.	circular	\checkmark		
	generic	>		
Kerr	circular	\checkmark		
	generic (w/o resonances)			
	generic (w/ resonances)			

		Adiabatic	1st order	2nd order
Schwarz.	circular	\checkmark	\checkmark	
	generic	\checkmark		
Kerr	circular	\checkmark		
	generic (w/o resonances)			
	generic (w/ resonances)			

		Adiabatic	1st order	2nd order
Schwarz.	circular	\checkmark	\checkmark	
	generic	\checkmark		
Kerr	circular	\checkmark		
	generic (w/o resonances)	\checkmark		
	generic (w/ resonances)			

		Adiabatic	1st order	2nd order
Schwarz.	circular	\checkmark	\checkmark	
	generic	>	\checkmark	
Kerr	circular	\checkmark		
	generic (w/o resonances)	\checkmark		
	generic (w/ resonances)			

		Adiabatic	1st order	2nd order
Schwarz.	circular	\checkmark	\checkmark	
	generic	\checkmark	\checkmark	
Kerr	circular	\checkmark	\checkmark	
	generic (w/o resonances)	\checkmark		
	generic (w/ resonances)			

		Adiabatic	1st order	2nd order
Schwarz.	circular	\checkmark	\checkmark	underway
	generic	\checkmark	\checkmark	
Kerr	circular	\checkmark	\checkmark	
	generic (w/o resonances)	\checkmark	underway	
	generic (w/ resonances)	underway	underway	

		Adiabatic	1st order	2nd order
Schwarz.	circular	\checkmark	\checkmark	underway
	generic	\checkmark	\checkmark	
	circular	\checkmark	\checkmark	
Kerr	generic (w/o resonances)	\checkmark	underway	
	generic (w/ resonances)	underway	underway	holy grail

Conclusion

Formalism: motion of a small object

- in principle, no obstacle to going to arbitrary order
- through second order in its mass, a nonspinning compact object moves on a geodesic in a vacuum geometry $g_{\mu
 u} + h^{
 m R}_{\mu
 u}$
- $h_{\mu\nu}^{\rm R}$ can be computed by replacing the object with an analytically known puncture

Status of binary modeling

- wealth of numerical results at first order
- calculations at second order are underway [Wednesday talks]
- second-order equations have so far neglected spin and quadrupole moment of object-need to include them through second order for accurate modeling

Using the local self-force in evolution

Gralla-Wald

- source of $h^1_{\mu\nu}$ moves on Kerr geodesic z^{μ}_0
- calculate shift δz^{μ} relative to z_{0}^{μ}
- error grows large with time

Geodesic-source + osculation

• at each t, source moves on instantaneously tangential geodesic $z_{0,t}^{\mu}$

• error
$$\sim (m/M)^2$$

Self-consistent [Pound]

- source moves on the accelerated orbit z^{μ}
- only been implemented in scalar field model

