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Original motivation: extreme-mass-ratio inspirals (EMRIs)

stellar-mass neutron star or black
hole orbits supermassive black hole
m emits gravitational radiation,
loses energy, spirals into M

waveforms carry very precise information about strong-field
dynamics and geometry of spacetime near black hole
need very accurate model of motion for ∼ M/m ∼ 105

orbits—self-force theory
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Self-force’s place in the two-body problem

Binary parameter space

[Leor Barack]

Besides modeling EMRIs,
self-force can improve models of
ground-based-detector sources

determine high-order
post-Newtonian parameters
calibrate Effective One
Body theory

Also, self-force has surprisingly large domain of validity [Le Tiec et al]
⇒ can directly model IMRIs (and even similar-mass binaries?)
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Point particle picture

Linearized theory
treat m as point particle, with
stress-energy Tµν ∼ mδ3(xρ − zρ)
write total metric as gµν + hµν
(e.g., gµν is metric of M ,
hµν is created by m)
approximate Einstein equation
Gµν [g + h] = 8πTµν with
linearized EFE δGµν [h] = 8πTµν

Tail
part of perturbation propagates
slower than light
light “cone” bends
∴ hµν depends on past history
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Self-force: geodesic motion in an effective metric

MiSaTaQuWa equation [Mino,Sasaki,Tanaka; Quinn & Wald]

nonlocal tail acts as potential, exerts force Fµ ∼ m∇µtail
tail isn’t nice: non-differentiable, not a solution to a field equation

Generalized equivalence principle [Detweiler &Whiting]

local field near particle split into two: h(1)
µν = hS(1)

µν + hR(1)
µν

hS(1)
µν ∼ m

r + O(r0); local bound field of particle

hR(1)
µν ∼ tail + local terms; smooth solution to source-free EFE

motion is geodesic in effective metric gµν + hR(1)
µν
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A small extended object moving through spacetime

Fundamental question
how does an object’s own gravitational field affect its motion?

Regime: small object
examine spacetime
(M, gµν) containing
object of mass m and
external lengthscales R
seek representation of
object’s motion when its
mass and size are � R
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Perturbative description [Mino, Sasaki, Tanaka; Quinn & Wald; Detweiler & Whiting; Gralla & Wald; Pound; Harte]

treat object as source of perturbation of external background
spacetime (ME , gµν):

gµν = gµν + εh(1)
µν + ε2h(2)

µν + . . .

ε counts powers of m
assume object is compact, so as m → 0, linear size → 0 at same rate
seek representation of motion in (ME , gµν)
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Challenges in applying perturbation theory

Multiple time scales in binary
orbital period (∼ M )
time over which inspiral occurs (∼ M 2/m)

Multiple length scales
near small object: scale of object’s size (∼ m)
everywhere else: scale of external universe (∼ M )

Identifying object’s position, spin, higher moments
point particle not valid in nonlinear field theory such as GR
how do we capture bulk parameters without worrying about details
of object’s composition?
how do we best represent the small object’s bulk motion (e.g.,
identify its “center”)?
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Long time scales: self-consistent approximation

Worldline
rather than find small
corrections to
zeroth-order motion,
seek worldline γ(τ, ε)
that tracks object’s
bulk motion

Self-consistent expansion
since hµν depends on γ, can’t expand hµν in regular power series
without also expanding γ
allow γ to depend on ε and assume expansion of form

gµν(x, ε) = gµν(x) + hµν(x, ε; γ)
= gµν(x) + εh(1)

µν (x; γ) + ε2h(2)
µν (x; γ) + . . .
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Small length scales: matched asymptotic expansions

define buffer region by
m � r � R
because m � r , can treat
mass as small perturbation
of external background
because r � R, can extract
information about small
object
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Matched asymptotic expansions: the inner expansion

Zoom in on object
use scaled coords r̃ ∼ r/ε to keep size of object fixed, send other
distances to infinity as ε→ 0
unperturbed object defines background spacetime gIµν in inner
expansion
buffer region at asymptotic infinity r � m
⇒ can define multipole moments without integrals over object
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Position at first order: self-consistent definition

Mass dipole about γ

We want to find worldline γ for which Mµ = 0

work in coordinates
centered on
unspecified γ
calculate mass
dipole Mµ of inner
background gIµν

first-order
acceleration of γ:
whatever ensures
Mµ ≡ 0
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Position in self-consistent expansion (continued)

Enforce a relationship between the expansions
...to define a worldline for all time, even for black hole

in buffer region in ME , write
metric in coordinates centered
on γ
make object at “center” of
coordinates, in that its mass
dipole vanishes in MI
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Solving the EFE in buffer region

Expansion for small r
in coordinates centered on γ, allow all negative powers of r in h(n)

µν

but inner expansion must not have negative powers of ε
⇒ most negative power of r in εnh(n)

µν is εn

rn = εn

εn r̃n = 1
r̃n

Therefore

h(n)
µν = 1

rn h(n,−n)
µν + r−n+1h(n,−n+1)

µν + r−n+2h(n,−n+2)
µν + . . .

Information from inner expansion
1/r̃n terms arise from asymptotic expansion of zeroth-order
background in inner expansion
⇒ h(n,−n)

µν is determined by multipole moments of isolated object
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Form of solution in buffer region

What appears in the solution?
put expansion into nth-order wave equation, solve order by order in r
expand each h(n,p)

µν in spherical harmonics (wrt angles on sphere
around r = 0)
given a worldline γ, the solution at all orders is fully characterized by

1 object’s multipole moments (and corrections thereto): ∼ Y`m

r`+1

2 smooth solutions to vacuum wave equation: ∼ r`Y `m

everything else made of (linear or nonlinear) combinations of the
above

Self field and regular field
multipole moments define hS(n)

µν ; interpret as bound field of object
smooth homogeneous solutions define hR(n)

µν ; free radiation,
determined by global boundary conditions
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First and second order solutions

First order
h(1)
µν = hS(1)

µν + hR(1)
µν

hS(1)
µν ∼ 1/r + O(r0) defined by mass monopole m

hR(1)
µν is undetermined homogenous solution regular at r = 0

evolution equations: ṁ = 0 and aµ(0) = 0
(where D2zµ

dτ2 = aµ(0) + εaµ(1) + . . .)

Second order
h(2)
µν = hS(2)

µν + hR(2)
µν

hS(2)
µν ∼ 1/r2 + O(1/r) defined by

1 monopole correction δm
2 mass dipole Mµ (set to zero)
3 spin dipole Sµ

evolution equations: Ṡµ = 0, ˙δm = . . ., and aµ(1) = . . .
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Equation of motion

MiSaTaQuWa-Mathisson-Papapetrou equation

aα(1) = − 1
2

(
gαδ + uαuδ

)(
2hR(1)
δβ;γ − hR(1)

βγ;δ

)
uβuγ + 1

2m Rα
βγδuβSγδ

self-force (due to regular field) + Papapetrou spin-force
together with ṁ = 0 and Ṡµν = 0
through order ε, small object moves as a test body in gµν + hR

µν
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Why second order?

Modeling EMRIs
inspiral occurs very slowly, on time scale t ∼ 1/m
neglecting second-order self-force leads to error in acceleration
δaµ ∼ m2

⇒ error in position δzµ ∼ m2t2

⇒ after time t ∼ 1/m, error δzµ ∼ 1
∴ accurately describing orbital evolution requires second-order force

Modeling IMRIs and similar-mass binaries
second-order self-force should yield highly accurate model for IMRIs
will fix terms quadratic in mass in post-Newtonian and Effective One
Body theory
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Position at second order: mass-centered gauges

Problem
mass dipole moment defined for asymptotically flat spacetimes
beyond zeroth order, inner expansion is not asymptotically flat

Solution
find gauge in which field is manifestly mass-centered on γ
define position in other gauges by referring to transformation to that
mass-centered gauge
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Position at second order [Pound]

start in gauge
mass-centered on zµ

demand that
transformation to
practical (e.g., Lorenz)
gauge does not move zµ

i.e., insist ∆zµ = 0
ensures worldline in the
two gauges is the same
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Self-consistent equation of motion [Pound]

Neglecting object’s spin and quadrupole moment,

D2zµ

dτ2 = 1
2 (gµν + uµuν)

(
gνρ − hR

ν
ρ
) (

hR
σλ;ρ − 2hR

ρσ;λ
)

uσuλ + O(ε3)

here hR
µν = εhR(1)

µν + ε2hR(2)
µν

Generalized equivalence principle
zµ satisfies geodesic equation in gµν + hR

µν

recall: here gµν + hR
µν is a “physical” field in the sense of satisfying

vacuum EFE
extends results of Detweiler-Whiting to second order
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Effective interior metric

From self-field to singular field
hS
µν and hR

µν derived only in buffer region
simply extend them to all r > 0 (and r = 0, for hR

µν)
does not change field in buffer region or beyond
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Obtaining global solution

Puncture/effective source scheme
define hPµν as small-r expansion of hS

µν truncated at finite order in r
define hRµν = hµν − hPµν ' hR

µν

The point...
to calculate effective metric “inside” object and full metric
everywhere else, all you need is hS

µν found in buffer region
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Particles and punctures

A particle at linear order
can show that the linear field h1

µν is identical to one sourced by a point
mass m moving on γ

⇒ exactly recover the point particle picture

A puncture at any order
the field outside the object, and the object’s bulk motion, can be
computed by replacing the object with a puncture equipped with a set of
multipole moments

⇒ generalizes the idea of a point particle

(A note on “regularization”: we never introduce divergent quantities that
have to be regularized—every quantity is finite at every step of every
calculation)
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Geodesics in Kerr

[Steve Drasco]

geodesic characterized by three
constants of motion:

1 energy E
2 angular momentum Lz
3 Carter constant Q, related to

orbital inclination

E , Lz , Q related to frequencies
of r , φ, and θ motion
resonances occur when two
frequencies have a rational ratio

[Steve Drasco]
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Hierarchy of self-force models [Hinderer & Flanagan]

when self-force is accounted for, E , Lz , and Q evolve with time
on an inspiral timescale t ∼ M2

m , the phase of the gravitational wave
has an expansion

φ = M
m

[
φ0 + m

M φ1 + O
(

m2

M 2

)]

a model that gets φ0 right is probably enough for signal detection in
many cases
a model that gets both φ0 and φ1 is enough for parameter extraction
passage through resonances complicates the expansion, but
post-adiabatic requirements are unaltered
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when self-force is accounted for, E , Lz , and Q evolve with time
on an inspiral timescale t ∼ M2

m , the phase of the gravitational wave
has an expansion

φ = M
m

[
φ0 + m
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M 2

)]

a model that gets φ0 right is probably enough for signal detection in
many cases
a model that gets both φ0 and φ1 is enough for parameter extraction
passage through resonances complicates the expansion, but
post-adiabatic requirements are unaltered

determined by
• averaged dissipative piece of Fµ

1

Adiabatic order determined by
• averaged dissipative piece of Fµ

2
• conservative piece of Fµ

1
• oscillatory dissipative piece of Fµ

1

Post-adiabatic order
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Orbital evolution

adiabatic evolution schemes in Kerr already devised and
implemented (modulo resonances) [Mino, Drasco et al, Sago et al]

[Warburton et al 2011, image courtesy of Warburton]

also, complete
inspirals simulated in
Schwarzschild
including full Fµ

1

should soon be
possible in Kerr
but still need Fµ

2 for
accurate
post-adiabatic
inspiral
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Improving other binary models

PN and EOB models have been improved using data for conservative
effects of the self-force (computed by “turning off” dissipation)

orbital precession [Barack et al.]

ISCO shift [Barack and Sago, Isoyama et al.]

Detweiler’s redshift invariant
dt

dτR on circular orbits [Detweiler,

Shah et al., Dolan and Barack]

averaged redshift
〈 dt

dτR

〉
on

eccentric orbits [Barack et al., van de

Meent & Shah]

Binary parameter space

[Leor Barack]

spin precession [Dolan et al.]

quadrupolar and octupolar self-tides [Dolan et al, Damour and Bini]
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Using SF to directly model other binaries

Comparisons for equal-mass binaries

SF results use “mass symmetrized” model: m
M →

mM
(m+M)2

with mass-symmetrization, second-order self-force might be able to
directly model even similar-mass binaries
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Calculations performed as of 2005

Adiabatic 1st order 2nd order

Schwarz.
circular X

X underway

generic X

X

Kerr

circular

X X

generic
(w/o resonances)

X underway

generic
(w/ resonances)

underway underway holy grail
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Calculations performed as of 2006

Adiabatic 1st order 2nd order

Schwarz.
circular X

X underway

generic X

X

Kerr

circular X

X

generic
(w/o resonances)

X underway

generic
(w/ resonances)

underway underway holy grail
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Calculations performed as of 2007

Adiabatic 1st order 2nd order

Schwarz.
circular X X

underway

generic X

X

Kerr

circular X

X

generic
(w/o resonances)

X underway

generic
(w/ resonances)

underway underway holy grail
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Calculations performed as of 2009

Adiabatic 1st order 2nd order

Schwarz.
circular X X

underway

generic X

X

Kerr

circular X

X

generic
(w/o resonances) X

underway

generic
(w/ resonances)

underway underway holy grail
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Calculations performed as of 2010

Adiabatic 1st order 2nd order

Schwarz.
circular X X

underway

generic X X

Kerr

circular X

X

generic
(w/o resonances) X

underway

generic
(w/ resonances)

underway underway holy grail
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Calculations performed as of 2012

Adiabatic 1st order 2nd order

Schwarz.
circular X X

underway

generic X X

Kerr

circular X X
generic
(w/o resonances) X

underway

generic
(w/ resonances)

underway underway holy grail
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Calculations performed as of 2015

Adiabatic 1st order 2nd order

Schwarz.
circular X X underway

generic X X

Kerr

circular X X
generic
(w/o resonances) X underway

generic
(w/ resonances) underway underway

holy grail
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Calculations performed as of ????

Adiabatic 1st order 2nd order

Schwarz.
circular X X underway

generic X X

Kerr

circular X X
generic
(w/o resonances) X underway

generic
(w/ resonances) underway underway holy grail

Adam Pound Introduction to gravitational self-force 41 / 43



Motivation Point particle Extended object EOM Field Modeling binaries (i.e., concrete results)EMRIs Other binaries

Conclusion

Formalism: motion of a small object
in principle, no obstacle to going to arbitrary order
through second order in its mass, a nonspinning compact object
moves on a geodesic in a vacuum geometry gµν + hR

µν

hR
µν can be computed by replacing the object with an analytically

known puncture

Status of binary modeling
wealth of numerical results at first order
calculations at second order are underway [Wednesday talks]
second-order equations have so far neglected spin and quadrupole
moment of object—need to include them through second order for
accurate modeling
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Using the local self-force in evolution

Gralla-Wald
source of h1

µν

moves on Kerr
geodesic zµ0
calculate shift δzµ
relative to zµ0
error grows large
with time

Geodesic-source
+ osculation
at each t, source
moves on
instantaneously
tangential geodesic
zµ0,t
error ∼ (m/M )2

Self-consistent
[Pound]

source moves on
the accelerated
orbit zµ

only been
implemented in
scalar field model
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