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Recall our motivation

Several reasons for going to second
order

@ necessary for accurate EMRI
evolution over inspiral time
~ M/

@ should yield highly accurate
model for IMRIs

@ will fix terms quadratic in mass in
post-Newtonian and Effective
One Body theory
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The simplest problem: quasicircular orbits in Schwarzschild

inspiraling
orbit

@ assume slow evolution.
ie., rp = 1p(et)
(€ =p/M)

@ at first order, we usually approximate the orbit as a geodesic

@ at second order, the correction to the motion cannot be neglected
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Things we can calculate in this scenario

@ the actual slow evolution and resultant waveform

inspiraling
orbit
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Things we can calculate in this scenario

@ Detweiler's redshift: %! in conservative part of effective metric
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Outline

@ Treatments of quasicircular orbits

© The infrared problem

© Resolution of (half of) the infrared problem
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Quasicircular orbits
Governing equations at second order

@ Lorenz-gauge field equations

Eu[h] = —167T,,
E,.[h?] = 26°R,,, [h', b inside T
B [h™?] = =167 17, + 26°R,, [h', h'] — E.w[h7?]  outside I

where E,,, [h] = Ohy, + 2R,*,Phag, and T is a tube around z*
@ Coupled to equation of motion
D?z# 1

W = _i(gl“’ + upuy)(glils - hf(;)(thﬁ,'y - hﬂR'y;é)uﬁu’y

We want to solve this system in the frequency domain
@ the £ = 0,1 modes are problematic in the time domain

o frequency domain (combined with a two-timescale expansion) is
probably more suitable for long-term evolutions
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Quasicircular orbits

Treatment 1: expansion around a circular geodesic

@ Expand around a zeroth-order orbit:
#(te) = 2 (t) + e (t) + O (€9)

where 2} is a circular geodesic

inspiraling
orbit z#

@ write
1 —_ 71 1
Tuu[z] - Tp,l/[zO] + €0 Tp,l/
® add 6T}, to T,

° h}w has simple time zeroth-order

. oM
dependence eizmQOt of saxglfnigial
= so does 52Rl“,[hl, hl] frequency

o if we neglect dissipative part of

2}, everything is periodic
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Quasicircular orbits

Treatment 2: Multiscale expansion

@ Treat orbital radius as function of ‘slow time’ et:

Tp(t,€) = i (et €)

e in E,,[h'], treat derivatives of

p(€t) as small rp(eta)

@ move those terms into
second-order source

@ at fixed slow time, all terms i

field equations are periodic o (ety)
P

@ evolve from slow time to slow
time using equation of motion

for 7, (et) 7p(eto)
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Problem

Outline

© The infrared problem
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Problem
Typical calculation at first order

@ we approximate the source
orbit as a bound geodesic

@ it radiates forever

@ the system has infinite
ADM mass

@ at any given advanced time,
the BH has already
absorbed an infinite amount
of energy and angular
momentum
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Problem
Typical calculation at first order

@ we approximate the source
orbit as a bound geodesic
Geodesic

approximation .
accurate to @ the system has infinite

1st order only ADM mass
in region of . d d ti
size < 1/ @ at any given advanced time,

the BH has already
absorbed an infinite amount
of energy and angular
momentum

@ it radiates forever

@ the approximation breaks
down after dephasing time
~ 1/\/€, when 2+ — 2l ~ M

= also breaks down at
distances ~ 1/./€
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[
The infrared problem at second order

@ we no longer neglect
evolution of the orbit, and
in the full retarded solution,
the radiation goes to zero in
the infinite past
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[
The infrared problem at second order

@ we no longer neglect
evolution of the orbit, and
in the full retarded solution,
the radiation goes to zero in
the infinite past

@ but in some “near zone" we
still want to use expansion
of worldline

@ or a two-timescale
expansion

@ in this near zone, we solve
periodic equations with
periodic solutions (e.g., at
fixed slow time)
= what boundary
conditions do we impose?
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Problem
Its mathematical manifestation in our calculations

o we decompose into harmonics: h, = 3, ham(r)e” 0ty ibm
= the source also gets decomposed:
PRuy =Y iim S8R (1) e~ ™m0t yilm \where

pv

52Rz€m - E D;/eﬁ,n/i//zllm// h’illf/m/ h,}//e//,,n//
1l 1
7

'm
Z-//ellm//
1 eiler
e at large 7, hyp, ~ <
) im'Qr _—im/ Qr 2 1
= from terms like “——“——, we get 0“Riyo ~ 7z for all m =0

modes of §°R,,,,

o focus on £ = 0. The retarded solution behaves like h, ~ [ 4
= the integral diverges logarithmically
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Resolution

Outline

© Resolution of (half of) the infrared problem
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Matching to a post-Minkowski solution

use general Matched asymptotic expansions

frequency @ use the two-timescale
domain expansion or expansion of
solution P o P
here worldline in the near zone

@ use the Blanchet-Damour
(or Will-Wiseman) general
post-Minkowski solution in

match to the far zone

general
post- @ match the two to get the
Minkowski correct large-r behavior of

solution here the near-zone solution

Adam Pound Second-order self-force: problems in the infrared
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use general Matched asymptotic expansions

frequen;y @ use the two-timescale
domain

solution eXpangon_ or expansion of
here worldline in the near zone
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Resolution
Toy problem

@ second-order gravity is hard
= use a simple scalar toy model as a testbed

@ scalar point charge on quasicircular orbit in flat space
5 (z —
Oy = —47Tq/yd7'
r2sin 6
Ope = t""V 01V 01 =: 8o
with t* = diag(1,1,1,1)

@ in near zone, expand worldline z* around circular orbit
= exactly the same infrared problems as in gravity
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Resolution

“Post-Minkowski” solution

From PM theory, the retarded field outside the particle's orbit always
looks like

@ First order

(=1)", Fr(u)
o1 = Z il Or r
>0
where L=14---j4pandu=¢t—r
@ Second-order
-1)¢ . Gr(u ar
¢2:Z( ) 8L7L( )Jrébg '

|
= VAl r

t . . . . . .
where ¢5™'" is a certain integral over quadratic combinations of F/ s
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All the problems lie in hereditary terms

5(2) Yom
@ Source looks like Sz = Z M(r# +0(1/r?)
£m
e O(1/r?) source generates terms in @2 that depend only on current

value of u, easily matched to terms in near-zone solution

52y,
° M produces “hereditary terms” in 5. In particular,

1
phered — o / dsS{P (t — s)[In(s — r) — In(s + 7)]

= diverges if we use a source from a precisely circular orbit
(SOO = constant), but it converges for an inspiraling source
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Matching |

@ to match the near-zone solution to the well-behaved far-zone
solution, we reexpand the far-zone solution in the near zone.

@ rewrite the hereditary monopole term as
@Blgred (=1+In2r) (2)+—/ dsln [5(2)(25 s—r)— S(%)(tferr)]

expand for small r (corresponding to r < 1/¢)

= in the near zone, the integral is higher order in ¢

= phered = (—1 +1n 27‘)8(()3) is the behavior of the actual retarded
solution at large r in the near zone

@ here, outside the integral, 53(2)) is constructed from the ¢ of a
circular orbit
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Resolution

Matching |l

We can ensure our near-zone solution has the correct asymptotic
behavior by

e introducing a puncture ply, = (—1+ 11127")5(()(2))
e solving [JvX]oo = S200 — [J¢” oo in the near zone

o Writing w200 = ©o%0 + Phoo
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Resolution
Remaining work

Two things remain to be done
@ apply the matching to PM expansion in gravity case

e figure out correct behavior at the horizon (work with Takahiro
Tanaka)
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