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Quasicircular orbits Problem Resolution

Recall our motivation

Several reasons for going to second
order

necessary for accurate EMRI
evolution over inspiral time
∼ M 2/µ

should yield highly accurate
model for IMRIs
will fix terms quadratic in mass in
post-Newtonian and Effective
One Body theory
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Quasicircular orbits Problem Resolution

The simplest problem: quasicircular orbits in Schwarzschild

assume slow evolution.
i.e., rp = rp(εt)
(ε = µ/M )

at first order, we usually approximate the orbit as a geodesic
at second order, the correction to the motion cannot be neglected
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Quasicircular orbits Problem Resolution

Things we can calculate in this scenario

the actual slow evolution and resultant waveform
Detweiler’s redshift: ũt in conservative part of effective metric

ũt = 1√
1− 3M

r0

{
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Quasicircular orbits Problem Resolution

Outline

1 Treatments of quasicircular orbits

2 The infrared problem

3 Resolution of (half of) the infrared problem
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Quasicircular orbits Problem Resolution

Governing equations at second order

Lorenz-gauge field equations

Eµν [h1] = −16πT̄1
µν

Eµν [h2] = 2δ2Rµν [h1, h1] inside Γ
Eµν [hR2] = −16πT̄2

µν + 2δ2Rµν [h1, h1]− Eµν [hP2] outside Γ

where Eµν [h] = �hµν + 2Rµανβhαβ , and Γ is a tube around zµ

Coupled to equation of motion

D2zµ

dτ2 = −1
2(gµν + uµuν)(gνδ − hR

ν
δ)(2hR

δβ;γ − hR
βγ;δ)uβuγ

We want to solve this system in the frequency domain
the ` = 0, 1 modes are problematic in the time domain
frequency domain (combined with a two-timescale expansion) is
probably more suitable for long-term evolutions

Adam Pound Second-order self-force: problems in the infrared 7 / 21



Quasicircular orbits Problem Resolution

Treatment 1: expansion around a circular geodesic

Expand around a zeroth-order orbit:

zµ(t, ε) = zµ0 (t) + εzµ1 (t) + O
(
ε2
)

where zµ0 is a circular geodesic

write
T1
µν [z] = T1

µν [z0] + εδT1
µν

add δT1
µν to T2

µν

h1
µν has simple time

dependence e−imΩ0t

⇒ so does δ2Rµν [h1, h1]
if we neglect dissipative part of
zµ1 , everything is periodic

inspiraling
orbit

zeroth-order
orbit

of same initial
frequency
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Quasicircular orbits Problem Resolution

Treatment 2: Multiscale expansion

Treat orbital radius as function of ‘slow time’ εt:

rp(t, ε) = rµp (εt, ε)

in Eµν [h1], treat derivatives of
rp(εt) as small
move those terms into
second-order source
at fixed slow time, all terms in
field equations are periodic
evolve from slow time to slow
time using equation of motion
for rp(εt)
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Quasicircular orbits Problem Resolution

Outline

1 Treatments of quasicircular orbits

2 The infrared problem

3 Resolution of (half of) the infrared problem
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Quasicircular orbits Problem Resolution

Typical calculation at first order

we approximate the source
orbit as a bound geodesic
it radiates forever
the system has infinite
ADM mass
at any given advanced time,
the BH has already
absorbed an infinite amount
of energy and angular
momentum
the approximation breaks
down after dephasing time
∼ 1/

√
ε, when zµ− zµ0 ∼ M

⇒ also breaks down at
distances ∼ 1/

√
ε
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Quasicircular orbits Problem Resolution

The infrared problem at second order

we no longer neglect
evolution of the orbit, and
in the full retarded solution,
the radiation goes to zero in
the infinite past
but in some “near zone” we
still want to use expansion
of worldline
or a two-timescale
expansion
in this near zone, we solve
periodic equations with
periodic solutions (e.g., at
fixed slow time)
⇒ what boundary
conditions do we impose?
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Quasicircular orbits Problem Resolution

Its mathematical manifestation in our calculations

we decompose into harmonics: h1
µν =

∑
ilm hilm(r)e−imΩ0tY ilm

µν

⇒ the source also gets decomposed:
δ2Rµν =

∑
ilm δ2Rilm(r)e−imΩ0tY ilm

µν , where

δ2Ri`m =
∑

i′`′m′
i′′`′′m′′

Di`m
i′`′m′i′′`′′m′′h1

i′`′m′h1
i′′`′′m′′

at large r , h1
i′`′m′ ∼ eim′Ωr

r

⇒ from terms like eim′Ωr

r
e−im′Ωr

r , we get δ2Ri`0 ∼ 1
r2 for all m = 0

modes of δ2Rµν
focus on ` = 0. The retarded solution behaves like h2

i00 ∼
∫∞

r
dr′
r′

⇒ the integral diverges logarithmically
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Quasicircular orbits Problem Resolution

Outline

1 Treatments of quasicircular orbits

2 The infrared problem

3 Resolution of (half of) the infrared problem
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Quasicircular orbits Problem Resolution

Matching to a post-Minkowski solution

use general
frequency
domain
solution
here

match to
general
post-

Minkowski
solution here

Matched asymptotic expansions
use the two-timescale
expansion or expansion of
worldline in the near zone
use the Blanchet-Damour
(or Will-Wiseman) general
post-Minkowski solution in
the far zone
match the two to get the
correct large-r behavior of
the near-zone solution
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Quasicircular orbits Problem Resolution

Toy problem

second-order gravity is hard
⇒ use a simple scalar toy model as a testbed
scalar point charge on quasicircular orbit in flat space

�ϕ1 = −4πq
∫
δ4(x − z)
r2 sin θ dτ

�ϕ2 = tµν∇µϕ1∇νϕ1 =: S2

with tµν = diag(1, 1, 1, 1)
in near zone, expand worldline zµ around circular orbit
⇒ exactly the same infrared problems as in gravity
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Quasicircular orbits Problem Resolution

“Post-Minkowski” solution

From PM theory, the retarded field outside the particle’s orbit always
looks like

First order
φ1 =

∑
`≥0

(−1)`

`! ∂L
FL(u)

r

where L = i1 · · · i` and u = t − r
Second-order

φ2 =
∑
`≥0

(−1)`

`! ∂L
GL(u)

r + φpart
2

where φpart
2 is a certain integral over quadratic combinations of F ′Ls
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Quasicircular orbits Problem Resolution

All the problems lie in hereditary terms

Source looks like S2 =
∑
`m

S (2)
`m (u)Y`m

r2 + O(1/r3)

O(1/r3) source generates terms in ϕ2 that depend only on current
value of u, easily matched to terms in near-zone solution
S(2)

`m Y`m
r2 produces “hereditary terms” in ϕ2. In particular,

ϕhered
00 = 1

2r

∫ ∞
r

dsS (2)
00 (t − s)[ln(s − r)− ln(s + r)]

⇒ diverges if we use a source from a precisely circular orbit
(S (2)

00 = constant), but it converges for an inspiraling source
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Quasicircular orbits Problem Resolution

Matching I

to match the near-zone solution to the well-behaved far-zone
solution, we reexpand the far-zone solution in the near zone.
rewrite the hereditary monopole term as

ϕhered
00 = (−1+ln 2r)S (2)

00 + 1
2r

∫ ∞
0

ds ln
( s

2

)
[S (2)

00 (t−s−r)−S (2)
00 (t−s+r)]

expand for small r (corresponding to r � 1/ε)
⇒ in the near zone, the integral is higher order in ε
⇒ ϕhered

00 = (−1 + ln 2r)S (2)
00 is the behavior of the actual retarded

solution at large r in the near zone
here, outside the integral, S (2)

00 is constructed from the ϕ1 of a
circular orbit
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Quasicircular orbits Problem Resolution

Matching II

We can ensure our near-zone solution has the correct asymptotic
behavior by

introducing a puncture ϕP200 = (−1 + ln 2r)S (2)
00

solving [�ϕR2 ]00 = S200 − [�ϕP ]00 in the near zone
writing ϕ200 = ϕR200 + ϕP200

Adam Pound Second-order self-force: problems in the infrared 20 / 21



Quasicircular orbits Problem Resolution

Remaining work

Two things remain to be done
apply the matching to PM expansion in gravity case
figure out correct behavior at the horizon (work with Takahiro
Tanaka)
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