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Introduction

Consider the motion of a particle orbiting the Kerr geometry.

))/(( 0MO µ≈Test particle case [ ]
The particle moves along a geodesic,
characterized by E , L , C.

The particle no longer moves along the geodesic
because of the back-reaction.

GW

SMBH
particleµ M

Evolution of E, L, CSecular orbital evolution

))/(( 1MO µ≈At 1st order [ ]

E : energy
L : azimuthal angular momentum
C : Carter constant
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Adiabatic evolution

For bound orbits, we can express the evolution of the orbital 
parameters in form of Fourier series:

・・・ test particle

・・・ 1st order

・・・ higher order

Adiabatic approximation

We focus on only the secular evolution of the orbital parameters.

secular part oscillatory part

Orbital phase : Φ = 𝜇𝜇
𝑀𝑀

−1
Φ(0) + 𝜇𝜇

𝑀𝑀
Φ(1) + ⋯

secular part oscillatory parts/averaged 2nd 
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Expressions with the asymptotic amplitudes of GW

We have the simple expressions for the secular parts with the 
amplitude of each partial wave. [NS et al. (2006)]

: amplitude of the partial wave�𝑍𝑍�Λ
∞/H �Λ = {ℓ,𝑚𝑚,𝑛𝑛𝑟𝑟 ,𝑛𝑛𝜃𝜃}

Infinity part Horizon part
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Analytic calculations in PN-eccentricity expansion

We update the results in Ganz et al. as follows:

Sago et al. 
(2006)

Ganz et al. 
(2007) This work

PN order 2.5 2.5 4
eccentricity O(e2) O(e2) O(e6)
inclination O(θinc) No assumption No assumption

BH absorption neglected neglected included

Analytic calculations with these expressions have already been 
done based on MST method. (e.g. Ganz et al. (2007) ).
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Orbital parameters (for bound orbit)

Semi-latus rectum p and eccentricity e

e
pr

e
pr pa −

=
+

=
1

   ,
1

ra : apastron radius
rp : periastron radius

Inclination angle ι
22
yx LLC +→(                    in Schwarzshild limit)

We show the results in terms of the following parameters:

q : normalized spin parameter (=a/M)

p
Mv = : Post-Newtonian parameter

γ : Euler’s constant (=0.57721...)

𝑌𝑌 ≡ cos 𝜄𝜄 ≡
𝐿𝐿

𝐿𝐿2 + 𝐶𝐶
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Results (Infinity part of 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 )
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Results (Infinity part of 𝑑𝑑𝐶𝐶/𝑑𝑑𝑑𝑑 )
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Results (Horizon part of 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 )
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What we see from the PN formulae

 𝑑𝑑𝐶𝐶/𝑑𝑑𝑑𝑑 = 0 for Y=1 (equatorial) case.
--> Equatorial orbits stay the equatorial plane

 𝑑𝑑(𝐿𝐿2 + 𝐶𝐶)/𝑑𝑑𝑑𝑑 is independent of Y for q=0 (Schwarzschild) case.
--> 𝐿𝐿2 + 𝐶𝐶 corresponds to the total angular momentum.

(𝐶𝐶 corresponds to 𝐿𝐿𝑥𝑥2 + 𝐿𝐿𝑦𝑦2 in Schwarzschild case)

 The leading and next leading terms of 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 H can be positive 
for q>0 case.
--> A superradiance can be possible.

 The superradiance terms are proportional to (𝑞𝑞 � cos 𝜄𝜄) and 
disappear for Y=0 (polar) case.
-->  The terms come from the spin-orbit coupling.
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Consistency check (Difference from numerical data)
∆ 𝐸𝐸

=
1
−

�
𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑
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Semi-latus rectum  p

We compare the analytic formulae with the numerical results from 
the Teukolsky code by Fujita-Tagoshi (2009).

∝ 1/𝑝𝑝3

∝ 1/𝑝𝑝3.5

∝ 1/𝑝𝑝4.5
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Convergence check (with respect to PN expansion)

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑡𝑡

= −
32
5

𝜇𝜇
𝑀𝑀

2
𝑣𝑣10 1 − 𝑒𝑒2 3/2 Δ0 + Δ1 + Δ2 + Δ3 + ⋯

Quadrupole part Each PN term

Δ0 = 1 +
73
24

𝑒𝑒2 +
37
96

𝑒𝑒4

Δ1 = 0

Δ2 = −
1247
336 −

9181
672 𝑒𝑒2 +

809
128 𝑒𝑒

4 +
8609
5376 𝑒𝑒

6 𝑣𝑣2

Δ3 = ⋯

Leading :

0.5PN :

1PN :

1.5PN :
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Convergence check (with respect to PN expansion)

Semi-latus rectum  p

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑡𝑡

= −
32
5

𝜇𝜇
𝑀𝑀

2
𝑣𝑣10 1 − 𝑒𝑒2 3/2 Δ0 + Δ1 + Δ2 + Δ3 + ⋯
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Convergence check (with respect to e-expansion)

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑡𝑡

= −
32
5

𝜇𝜇
𝑀𝑀

2
𝑣𝑣10 1 − 𝑒𝑒2 3/2 𝐴𝐴0𝑒𝑒0 + 𝐴𝐴2𝑒𝑒2 + 𝐴𝐴4𝑒𝑒4 + 𝐴𝐴6𝑒𝑒6

Quadrupole part Each order of eccentricity
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Convergence check (with respect to e-expansion)

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑡𝑡

= −
32
5

𝜇𝜇
𝑀𝑀

2
𝑣𝑣10 1 − 𝑒𝑒2 3/2 𝐴𝐴0𝑒𝑒0 + 𝐴𝐴2𝑒𝑒2 + 𝐴𝐴4𝑒𝑒4 + 𝐴𝐴6𝑒𝑒6

Semi-latus rectum  p
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Exponential resummation

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑡𝑡

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 𝑁𝑁

𝑎𝑎0𝑣𝑣0 + Δ2𝑣𝑣2 + Δ3𝑣𝑣3 + ⋯

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 𝑁𝑁

exp ln 𝑎𝑎0𝑣𝑣0 + Δ2𝑣𝑣2 + Δ3𝑣𝑣3 + ⋯

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 𝑁𝑁

exp ln𝑎𝑎0 +
𝑎𝑎2
𝑎𝑎0
𝑣𝑣2 +

𝑎𝑎3
𝑎𝑎0
𝑣𝑣3 + ⋯

original PN formula

Expand the exponent
in PN series

Exponential resummation form

To improve the accuracy of the analytic formulae, we apply the 
following deformation:

• Simple to implement
• Keep the sign (negative in this case)
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Exponential resummation
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Exponential resummation

�̇�𝑑 �̇�𝐿 �̇�𝐶

𝑒𝑒 = 0.1

𝑒𝑒 = 0.4

𝑒𝑒 = 0.7

𝑞𝑞 = 0.9
𝜄𝜄 = 50°
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Summary and future issue

 The secular changes of E, L, C for bound orbits are calculated 
analytically at 4PN, O(e6) order, including the BH absorption.

 Comparison with the numerical data suggests the analytic 
formulae are correct.

 Exponential resummation may improve the accuracy of the 
analytic formulae.

 PN convergence becomes worse close to the central BH.
The formulae are useless for highly eccentric orbits.
--> Need higher order calculations.

 Extend the spinning particle case.
 Secular parts are not enough to know GW waveforms accurately.

--> Need the conservative and 2nd order GSF anyway.
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