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CAPTURE OF COMPACT OBJECTS



EMRIS: FACTS

Sl [rigure Steve Drasco]

- Stellar mass object spiraling into 10* — 10° M,

- This range of masses corresponds to relaxed nuclei (!)

- Only compact objects (extended stars disrupted early)

- With eLISA stellar BH z 2 0.7 5
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> SMBH binaries the “holy grial” but: There has not been any other
mission conceived, planned or even thought of ever that can do
the science that we can do with EMRIs

> GRis a theory, needs corroboration: EMRIs unique probe in the
strong regime

> Tests of alternative theories (e.g. Chern-Simons gravity): EMRIs will
allow “geo”desic mapping of space-time

> Measures mass and spin with unprecedent precision

> Bridge between astrophysics and GR
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WHY ARE EMRIS DIFFICULT?

> This is not “just” the two-body problem in GR: This is the 2-b in GR
+the 10%-body problem in Newtonian physics

> l.e.: You have to understand astrophysics and GR
> Very difficult problem to solve: Important science comes at a price
> Many years before launch we're making new discoveries

> In this talk we'll see some of these difficulties, and how we've
made progress: Microphysics around SMBHs
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DISTRIBUTION OF STARS AROUND
SMBHS




THE THREE REALMS OF STELLAR DYNAMICS

Cluster dynamics
Newtoman coII|S|onaI
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HOW MANY A YEAR?

> Oth question: How many stars?
How do they distribute?

0 (Myn/pc®)
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HOW MANY A YEAR?

> 0th question: How many stars?
How do they distribute?

> Very few observations Ry
difficult to resolve

10°

108

> To study inner region have to
assume underlying population,
deproject observation, assume
observed star is tracing
invisible population

0 (Myn/pc®)
10° 105 107

4

10

- Considerable amount of
modelling: Are these profiles a
" (pc) coincidence?

1000

[Adapted from Merritt 2006]
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MASS SEGREGATION

> Classical problem in stellar dynamics: Statistical thermal
equilibrium f(£) o« e /7" must be violated close to the MBH
(Re, Rschw, Reont)

> There exists a Steady state with net inward flux of stars and energy
[Peebles 1972]

> If single-mass: quasi-steady solution takes power-law form
(isotropic DF) f(E) ~ EP, p(r) ~ r=7, withy =3/2 4+ p

> Confirmed later with a detailed kinematic treatment for
single-mass (sancat & woif 19763 7 = 7 /4 and p = —3/2 = 1/4
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STRONG MASS SEGREGATION

> “Only a fool tries to solve a complicated problem when he does
not even understand the simplest idealization”
Donald Lynden-Bell

> More realistic models: Properties of multi-mass systems poorly
reproduced by single-mass models

> Initial Mass Functions € [0.1, ~ 120|M, to first order by two
(well-separated) mass scales: O(1M.) (Main Sequence, White
Dwarfs, Neutron Stars) and O(10M..) (Stellar Black Holes)

> Two branches for the solution: A “weak” (unrealistic) branch and a
“strong” branch

[Hopman & Alexander 2009, Preto & Amaro-Seoane 2010, Amaro-Seoane & Preto 2011]
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CUSPS IN DISTRESS
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REGROWTH OF CUSPS

100.0

: s P > Deficit of old stars based on
f number counts of
spectroscopically identified, old

; i i |
LS ] ! I { f f stars in sub-parsec SgrA* (down
} ] to magnitude K = 15.5)
QS o8
an LTRSS [Do et al. 2009, Buchholz et al 2009]

1
Radus (arcsec) B> Best fits seem to favor negative
slopes v < 1

[Schédel et al 2009, Chatzopoulos et al 2014]

> Possibility of a core with p,
decreasing, v < 0

sources/arcsec®2

> QObservers only see essentially
late-type giants: Detectable
stars are still a small fraction
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HOW DO YOU CARVE A HOLE AT THE GALACTIC CENTER?

—

. Infalling clusters carve a hole - But need a steady inflow of one at
roughly every 107 years

[Baumgardt et al 2006, Portegies Zwart et al 2006]

2. SgrA* is a binary MBH - But then there must have been a more or
less recent major merger involving the Milky Way

> Too early to conclude for the inexistence of a segregated cusp
> Must invoke unlikely events to get rid of it

> Let's play the game What is the time necessary for cusp growth if
at some point a central core is carved?

> We have now the correct, more efficient, solution of mass
segregation

14
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WHAT DOES THIS MEAN FOR EMRIS?

Il Stellar cusps may re-grow in less than a Ty but the existence of
cored nuclei still remains a possibility

B The Milky Way nucleus is not necessarily the prototype of the
nucleus from which e-LISA detections will be more frequent

B We still expect that a substantial fraction of EMRI events will
originate from segregated stellar cusps, in particular with our new
solution of mass segregation

16
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DISGUISED CAPTURES




THE ROLE OF THE SPIN
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THE ROLE OF THE SPIN

> The EMRI critical radius is very close to the MBH where we do not
have many stars

> The bulk of the stellar system outside of the critical radius with
orders of magnitude more stars

> Stars out of the critical radius “plunge” and do not provide us with
the kind of information an EMRI does

> Plunges are more frequent than “adiabatic” EMRIs A common
result to all event rate estimates

> What if these stars did not plunge? We'd have extremely eccentric
sources, and event rates orders of magnitude larger

19
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NOT AN ACADEMIC EXERCISE

> Number of periapsis passages for an extremely radial stellar black
hole before swallowed by the Kerr MBH?

> Not calculated previously but easy to estimate

> Take initial orbital parameters, evolve them and find the
parameters corresponding to a plunge or unstable orbit

> (p, e, i), calculate constants of motion (E, L,, C), then the average
flux of these “constants”, i.e. the average time evolution (E, L,, C)

> Calculate time to go from apo to periapsis and back (radial
periode) and thus the change in (E, L, C) and so the new constants
of motion, therefore: (Prew, €new: inew)

20



SOME RESULTS DEPENDING ON THE SPIN

M. Spin (a/M) @ (pc) €; i(rad)  Tmrg (y1s) Te—LISA  Peri (e-LISA)
3E6 0.990 8.6182E-4  0.9990 0.6 2.6755E3 6.8409E2 432503
1E6 0.990 2.8727E-4  0.9990 0.6 2.9743E2 1.1915E2 146074
1E6 0.500 2.8727E-4  0.9990 0.6 2.4714E2 9.8328E1 97715
3E6 0.500 8.6182E-4  0.9990 0.6 2.2229E3 5.6105E2 288372
1E6 0.900 2.3939E-4  0.9990 0.2 1.5328E2 6.8038E1 90555
3E6 0.900 T.I818E-4  0.9990 0.2 1.3785E3 3.9237E2 268423
3E6 0.900 T.A786E-3  0.9999 0.2 4.6101E3 3.9131E2 267802
3E6 0.900 5.7429E-3  0.9999 0.2 2.0757E3 1.9956E2 149747
3E6 0.900 5.0250E-3  0.9999 0.2 1.3164E3 1.3607E2 106563
1E6 0.900 1.6750E-3  0.9999 0.2 1.4843E2 2.3449E1 35889
1E6 0.900 1.4357E-3  0.9999 0.2 9.1260E1 1.5533E1 24593
1E6 0.900 1.4357E-3  0.9999 0.1 9.2711E1 1.5769E1 25038
3E6 0.900 4.3071E-3  0.9999 0.1 8.1857E2 9.1641E1 74371
5E6 0.900 7T.A786E-3  0.9999 0.1 2.2652E3 2.0548E2 122993
1E6 0.900 1.4357E-3  0.9999 0.1 1.8272E2 3.1556E1 50075
4E6 0.700 6.7000E-3  0.9999 0 1.8937E3 1.7207E2 96284
4E6 0.998 6.7000E-3  0.9999 0 2.6993E3 2.4753E2 170494
4E6 0.998 9.5714E-3  0.9999 0 8.7952E3 6.6162E2 395248
4E6 0.998 7T.6571E-3  0.9999 0 4.1097E3 3.5062E2 230973
4E6 0.998 6.7000E-3  0.9999 0 2.6993E3 2.4753E2 170494
4E6 0.998 5.7429E-3  0.9999 0 1.7598E3 1.7468E2 123868
4E6 0.998 5.7429E-3  0.9999 0.3 1.6574E3 1.6506E2 117974
Note: Prograde orbits, T1le — 10 M:.)
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A FAMILY OF SEPARATRICES: s = 0.999
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IMPACT OF THE SPIN ON THE RATES?
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IT'S ALL ABOUT AN UPPER LIMIT
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KERR VS. SCHWARZSCHILD

Schw

Ker: _ AV
OgMmR1 = GpMRr X WV (¢, 5)

v Kerr 1 Schw HAL=ED
Nemr1 = Nemrr X W7 (¢, S)

> Take a typical value of a prograde orbit with high spin: W = 0.15;
then for a modest v = 1.5

\Kerr \1Schw
Nemrr ~ 114 X Ngygi
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KERR VS. SCHWARZSCHILD

Schw

Ker: _ AV
OgMmR1 = GpMRr X WV (¢, 5)

v Kerr 1 Schw HAL=ED
Nemr1 = Nemrr X W7 (¢, S)

> Take a typical value of a prograde orbit with high spin: W = 0.15;
then for a modest v = 1.5
NERr ~ 114 x NESTR;

> When taking into account spinning MBHs EMRI rates are boosted

29



THE BUTTERFLY EFFECT
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WHERE'S THE ONE-STAR RADIUS?

> What is the radius that contains one star?

> Let us use the MW: half of the mass within the orbit of S-2 has
Mencl/2 = n X Mg With 17 < 0.040 [citiessen et al 2009]

> Assume power-law of R

> Then .

R
M(R):/ tr? p(r) dr x/ r=7+2dr oc R377
J0O

J0O

N(R) ~ 8.6 x 10" <R>

6 x 10~* pc

, 1 =
Ri~6x10""pcx | ———
8.6 x 10%
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FiG. 11.—Evolution of the profiles of enclosed mass for GN25. The solid lines are the results of the MC simulation. For reference, the dashed lines show n = 1.5

profiles adjusted on the total mass and hal Emass radius of each component. The top thin line is the total mas

observational constrains for the MW center (see Fig. 3). [See the electronic edition of the Journal for a color version of this figure.]
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> Ry ~3x10~" pcfory=15

> Ry < for v = 2.1 (our realistic mass segregation models)

T T T
£ =0.08x10-4T,, = 3.50x10°yr

Interior Mass [M,)

vl PTTOY B AT il I

H Bl

& ‘.} I.Tﬁj;f’.

Ll

T T T
£ =2.71x109T,, = 1.05x1010yr

W |

Il
10 001 0.1 1 10 10 001 01
Radius [pe] Radius [pe]

10~

0.01

0.1
Radius [pe]

1

10

Fic. 11— Evolution of the profiles of enclosed mass for GN25. The solid lines are the results of the MC simulation. For reference, the dashed lines show 1 = 1.5
profiles adjusted on the total mass and hal -mass radius of each component. The top thin line is the total mass, including the central MBH; it is compared o the
observational constrains for the MW center (see Fig. 3). [See the electronic edition of the Journal for a color version of this figure.]
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> Ry ~3x10~" pcfory=15
> Ry < for v = 2.1 (our realistic mass segregation models)
> ~ 15Mg within 3 x 10~* pc in our Milky Way G25 model

[Freitag, Amaro-Seoane & Kalogera 2006]
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Fic. 11.—Evolution of the profiles of enclosed mass for GN25. The solid lines are the results of the MC simulation. For reference, the dashed lines show 7 = 1.5
profiles adjusted on the total mass and half-mass radius of each component. The top thin line is the total mass, including the central MBH; it is compared to the
observational constrains for the MW center (see Fig. 3). [See the electronic edition of the Journal for a color version of this figure.]
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> Ry ~3x10~" pcfory=15

> Ry < for v = 2.1 (our realistic mass segregation models)

> ~ 15Mg within 3 x 10~* pc in our Milky Way G25 model
[Freitag, Amaro-Seoane & Kalogera 2006]

> Watch out: | am cheating
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profiles adjusted on the total mass and half-mass radius of each component. The top thin line is the total mass, including the central MBH; it is compared to the
observational constrains for the MW center (see Fig. 3). [See the electronic edition of the Journal for a color version of this figure.]
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|> /’\/l. - 106/\/':,3
D> Qe ; ~ 1.45 x 107° pc (well within e-LISA)
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> M, =10°Mg

©
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> M, =10°M

> Qe i ~ 1.45 x 107° pc (well within e-LISA)

> m, = 10 M, (also successfully tested 5, 1.44 M)

> M, =10Mg, Gx; =~ 4.1 x 107° pC, €45 = 0.5, is, » = 30°

Perturbing star,

True anomaly

T Argument of pgriapsis
/C*éntral MBH <

EMRI‘\md Q C» ¥
Longil Reference
"""" direction
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v VvV Vv VvV V

M, =10°Mg

Qe i ~ 1.45 x 107° pc (well within e-LISA)

me = 10 M, (also successfully tested 5, 1.44 M)

m, =10Mg, a, ; ~ 41 x107% pc, e, ; = 0.5, i, , = 30°

Evolution of the eccentricity when taking energy loss, i.e. 2.5 PN
into account?

Perturbing star,

True anomaly
o Argument of pgriapsis
/Géntral MBH
4 Q C.

EMRI@ ¥
Long\ftudg of ascending node Reference
e direction
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Red i, = 30°, green i, = 30.001°, blue fiducial plus a ten billionth of
a degree, i, = 30.0000000001° and magenta plus a ten trillionth of a
degree, i, = 30.0000000000001°
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NO, IT'S NOT A BUG
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CHAOS?

> If at T = 0 two orbits differ by some small separation £(0) in phase
space...
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CHAOS?

> If at T = 0 two orbits differ by some small separation £(0) in phase
space...

> .. the difference will grow exponentially if the system is chaotic

Of(f) -~ G’\A‘TQ(O)

> This is not a classical system
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CHAOS?

> Ifat T = 0 two orbits differ by some small separation £(0) in phase
space...
> .. the difference will grow exponentially if the system is chaotic

> This is not a classical system

> How to characterise the chaos?
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a,(107° pc)

Start with a fiducial case and another one a bit different in phase
space. Let them evolve. Calculate time for the “distance” to be 2 x a,

and divide it by the isolated inspiral time : Characteristic time
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STELLAR DYNAMICS AND EMRIS — CONCLUSIONS

B A difficult problem: EMRIs closely connected with the dynamics of
dense systems

B The correct solution of mass segregation leads to enhancement of
1-2 orders of magnitude in rates

B Nature’s MBH are very likely spinning: Compact objects from very
eccentric orbits do not plunge, but become eccentric EMRIs, and
dominate the rates

B Originating in the bulk of the stellar system: Enhanced rates

These EMRIs are louder: Larger horizon distance

B Driven by two-body relaxation, a chaotic process: These EMRIs are
safe from the so-called Schwarzschild barrier, which blocks most
lower-eccentricity EMRIs

B GR must not always be wrong: It could be an innocent star nearby
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