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Goal

Goal
Numerically obtain (regular part of) perturbed metric generate by
a particle on an eccentric equatorial geodesic in Kerr spacetime.
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The trouble with Kerr

• Linearized Einstein equation in Lorenz gauge on a Kerr
background is not separable.

• (Nor in any other known gauge. No Regge-Wheeler.)
• Can’t solve linearized Einstein equation (directly) in frequency
domain.

• Time domain needs to be solved in 2+1 dimensions. (or solve
coupled equations in 1+1D).
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Metric reconstruction in radiation gauge

Key facts

• Teukolsky equation for ψ4 is separable.
• Wald’s theorem: ψ4 contains (almost) all information about a
vacuum perturbation of the Kerr metric.

Chrzanowski-Cohen-Kegeles (CCK) reconstruction

ψ4 ΨORG hORG
µν

nµhORG
µν = 0

gµνhORG
µν = 0
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Self-force in radiation gauge

• Self force formalism originally formulated in Lorenz gauge.
• Later extended to gauges related to Lorenz by a continuous

[Barack&Ori, 2001] or bounded [Gralla&Wald, 2008, 2011] gauge
transformation.

• Radiation gauge is not in these classes of gauge.
• [Pound,Merlin&Barack, 2013] derived transformation to a ‘locally
Lorenz’ gauge, deriving a mode-sum formula that takes a
radiation gauge metric perturbation as its input.
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Method of extended homogeneous solutions
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Teukolsky equation

ψ4

ΨORG

Observable
l-modes

l-mode
regularization

Tail estimate

Completion

• In the vacuum regions the solution to the
Teukolsky equation can be written:

ψ±
4 = ρ4√

2π
∑
lmn

Z±
lmn −2R±

lmn(r) −2Slmn(z)ei(mφ−ωmnt)

• Homogeneous radial solutions, −2R±
lmn, are

obtained as series of hypergeometric units using
the Mano-Suzuki-Tagasugi (MST) formalism.

• The Z±
lmn are calculated using variation of

parameters

Z±
lmn =

∫ rmax

rmin

−2R∓
lmn(r) −2Tlmn(r)

W [ −2R+
lmn, −2R−

lmn](r)
dr
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Hertz potential

ψ4

ΨORG

Observable
l-modes

l-mode
regularization

Tail estimate

Completion

• ΨORG is vacuum solution to Teukolksy equation

Ψ±
ORG = 1√

2π
∑
lmn

Ψ±
lmn 2R±

lmn(r) 2Slmn(z)ei(mφ−ωmnt)

• In addition
D4Ψ̄ORG = ρ−4ψ4

• D4 separates over Teukolsky modes, so inversion
reduces to inverting 2-by-2 matrix for each mode.

• Can be done analytically.[Ori, 2001]
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Hertz potential

ψ4

ΨORG

Observable
l-modes

l-mode
regularization

Tail estimate

Completion

Result:

Ψ+
lmn = (−1)l+m2Z+

lmn
ω4

mn

Ψ−
lmn = (−1)l+m 32Z−

lmn
plmω

(2κ)4(i(σ + 2ωmn)− 2)4

In addition one can easily obtain 2R±
lmn from −2R±

lmn
using that −2R̄±

lmn/∆2 is a solution to the spin-2
Teukolsky equation.
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Metric reconstruction

ψ4

ΨORG

Observable
l-modes

l-mode
regularization

Tail estimate

Completion

The CCK formalism gives the metric perturbation as

hORG
µν = ĤORG

µν ΨORG + c.c.

Construct expression for l-modes observable with
following steps:

1 Expand 2Slmn =
∑

l2(bmn)ll2 2Yl2mn.
2 Apply differential operators replacing ∂cos θ with

spin lowering operator.
3 Expand sYl2mn = 1

sin|s|/2 θ
∑

l2(Asm)ll2 Ylm.
4 Taylor expand coefficient in z = cos θ.
5 Drop z2 and higher terms.
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Mode sum regularization

ψ4

ΨORG

Observable
l-modes

l-mode
regularization

Tail estimate

Completion

〈huu〉
Use outer ‘half-string’ gauge.

δξ〈huu〉 = 2〈uµ∇µ(uνξν)〉 − 〈2ξνuµ∇µuν〉
0 O(log s)O(s)

GSF
Use discontinuous ‘no string’ gauge. Can use Lorenz
gauge regularization parameters.[Pound,Merlin&Barack,
2013]
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Tail estimation

ψ4

ΨORG

Observable
l-modes

l-mode
regularization

Tail estimate

Completion

• After subtracting regularization parameters, the
sum over l-modes still only converges as 1/lmax .

• The ‘tail’ of the sum can be estimated by fitting a
power series in 1/l to the partial sums of the
known l-modes.

• Number of terms in power series that can be fitted
accurately grows with lmax . (If l-modes are
accurate enough.)

• Effective convergence is faster than any polynomial
in lmax .
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Completion

ψ4

ΨORG

Observable
l-modes

l-mode
regularization

Tail estimate

Completion

• CCK procedure gives metric modulo perturbations
of the mass and angular momentum of the
background.

• see Cesar’s talk.
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Generalized redshift

Effective conservative metric:

g1 ≡ g0 + hR
cons,µν

Generalized redshift
U ≡ 〈 dt

dτ 〉 = Tr
Tr

Compare at fixed orbital frequencies: [Akcay et al.,2015]

∆U(Ωr ,Ωφ) = U1(Ωr ,Ωφ)− U0(Ωr ,Ωφ) = Tr
2µTr

〈hR
uu〉
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Schwarzschild: Comparison with Lorenz gauge results

p e Here Akcay et al. 2015 Barack and Sago 2011
10 0.10 −0.1277540232(10) −0.1277540(3) −0.1277554(7)
15 0.10 −0.07687063237(5) −0.0768706(2) −0.0768709(1)
20 0.10 −0.055221659739(6) −0.05522166(7) −0.05522177(4)

100 0.10 −0.010101234326660(2) −0.0101012344(10) —
10 0.20 −0.123647888(2) −0.123648(3) −0.1236493(7)
15 0.20 −0.07431375582(4) −0.07431376(9) −0.0743140(1)
20 0.20 −0.0534085449572(6) −0.05340854(9) −0.05340866(4)

100 0.20 −0.0097893279221005(14) −0.0097893274(4) —
10 0.30 −0.1168019818(2) −0.1168020(6) −0.1168034(6)
15 0.30 −0.07007684538(10) −0.0700768(5) −0.0700771(1)
20 0.30 −0.050403774160(6) −0.05040377(4) −0.05040388(4)

100 0.30 −0.009270280959(2) −0.009270281(4) —
10 0.40 −0.107220(6) −0.107221(2) −0.1072221(5)
15 0.40 −0.0641988(4) −0.064199(1) −0.0641991(1)
20 0.40 −0.0462337(4) −0.0462337(9) −0.04623383(4)

100 0.40 −0.0085452(4) −0.0085453(2) —
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Schwarzschild: Comparison with PN

• Range of orbits with 100 < p < 1000 and 0 < e < 0.4
• Get all known PN coefficients (3PN) with 5 digits of accuracy.

4PN
× p−5 p−5 log p
e2 −345.37(5) 19.733(5)
e4 737(4) −48.6(4)
e6 −185(12) 7(2)

5PN
× p−6 p−6 log p
e2 −2000± 400 −40± 20

Self-force corrections to eccentric orbits in Kerr Maarten van de Meent



Introduction Strategy Method Results Outlook

Schwarzschild: Comparison with PN

• Range of orbits with 100 < p < 1000 and 0 < e < 0.4
• Get all known PN coefficients (3PN) with 5 digits of accuracy.

4PN
× p−5 p−5 log p
e2 −345.37(5) 19.733(5)
e4 737(4) −48.6(4)
e6 −185(12) 7(2)

5PN
× p−6 p−6 log p
e2 −2000± 400 −40± 20

Self-force corrections to eccentric orbits in Kerr Maarten van de Meent



Introduction Strategy Method Results Outlook

Schwarzschild: Comparison with PN

• Range of orbits with 100 < p < 1000 and 0 < e < 0.4
• Get all known PN coefficients (3PN) with 5 digits of accuracy.

4PN
× p−5 p−5 log p
e2 −345.37(5) 19.733(5)
e4 737(4) −48.6(4)
e6 −185(12) 7(2)

5PN
× p−6 p−6 log p
e2 −2000± 400 −40± 20

Self-force corrections to eccentric orbits in Kerr Maarten van de Meent



Introduction Strategy Method Results Outlook

Eccentric orbit in Kerr: n-mode convergence
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Eccentric orbit in Kerr: l-mode convergence (regularization)
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Sample results: ∆U in Kerr

p e a = −0.9 a = 0.0 a = 0.9
pISO + 1 0.00 −0.1591225238(2) −0.2208475274(2) −0.40871659(2)
pISO + 1 0.10 −0.150998651(3) −0.209375588(9) −0.391205(6)
pISO + 1 0.20 −0.142034175(2) −0.195877797(5) −0.3635027(6)
pISO + 1 0.30 −0.13127905(3) −0.179591180(7) −0.327109(4)
pISO + 1 0.40 −0.1182790(4) −0.160212(3) −0.283764(2)
pISO + 10 0.00 −0.062991300291(4) −0.07205505742909(0) −0.09093033701(3)
pISO + 10 0.10 −0.061183242(1) −0.070241089(2) −0.089218442(2)
pISO + 10 0.20 −0.058180786(3) −0.066951046(3) −0.085406440(1)
pISO + 10 0.30 −0.054043290(2) −0.06226898(1) −0.0796315937(2)
pISO + 10 0.40 −0.048833176(5) −0.0562888674(2) −0.072058378(4)
pISO + 100 0.00 −0.00939536223942(0) −0.00961638326555(0) −0.00994293246401(0)
pISO + 100 0.10 −0.00927472002(8) −0.00950017309(4) −0.0098334067(4)
pISO + 100 0.20 −0.0089653010(1) −0.00918951172(9) −0.0095209535(1)
pISO + 100 0.30 −0.00846904194(5) −0.00868616413(8) −0.00900719351(3)
pISO + 100 0.40 −0.007788207(3) −0.00799229975(7) −0.0082942072(9)
pISO + 1000 0.00 −0.00099341331118(0) −0.00099601693770(0) −0.00099959564940(0)
pISO + 1000 0.10 −0.000983179941(7) −0.00098584074(1) −0.000989496817(4)
pISO + 1000 0.20 −0.000953066056(2) −0.000955719551(2) −0.000959363369(3)
pISO + 1000 0.30 −0.000903093610(8) −0.000905672227(9) −0.000909211662(8)
pISO + 1000 0.40 −0.0008332886(4) −0.000835722608(2) −0.000839062961(5)
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Eccentric orbit in Kerr: GSF (hot of the press)

Orbit: a = 0.9, p = 10, e = 0.1
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Introduction Strategy Method Results Outlook

Conclusions

• MST + CCK forms powerful framework for frequency domain
GSF calculations.

• First calculation of 〈huu〉 and GSF for eccentric orbits is Kerr
spacetime.

What’s next: generic orbits in Kerr!
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And now what?

ψ4

ΨORG

Observable
l-modes

l-mode
regularization

Tail estimate

Completion

Generic orbits

Generic orbits

huu/GSF eq. orbs Generic orbits
other quantities

GSF: Generic orbit huu: Generic orbit

any orbit/quantity

equatorial orbits Generic orbits
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The end

Thank you for listening!

For more details see
MvdM and AG Shah, arXiv:1506.04755
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n-mode convergence (mn-modes)
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Interior vs. Exterior limit
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