Self-force corrections to eccentric orbits in Kerr

Maarten van de Meent

University of Southampton

Capra 18, Kyoto, 30 June 2015 arXiv:1506.04755

		Outlook
Outline		

1 Introduction

2 Strategy

3 Method

Introduction		Outlook
Goal		

Goal

Numerically obtain (regular part of) perturbed metric generate by a particle on an eccentric equatorial geodesic in Kerr spacetime.

Introduction			Outlook
The trouble w	vith Kerr		

- Linearized Einstein equation in Lorenz gauge on a Kerr background is not separable.
- (Nor in any other known gauge. No Regge-Wheeler.)
- Can't solve linearized Einstein equation (directly) in frequency domain.
- Time domain needs to be solved in 2+1 dimensions. (or solve coupled equations in 1+1D).

Introduction			Outlook
The trouble	with Karr		

- Linearized Einstein equation in Lorenz gauge on a Kerr background is not separable.
- (Nor in any other known gauge. No Regge-Wheeler.)
- Can't solve linearized Einstein equation (directly) in frequency domain.
- Time domain needs to be solved in 2+1 dimensions. (or solve coupled equations in 1+1D).

Introduction			Outlook
The trouble w	with Kerr		

- Linearized Einstein equation in Lorenz gauge on a Kerr background is not separable.
- (Nor in any other known gauge. No Regge-Wheeler.)
- Can't solve linearized Einstein equation (directly) in frequency domain.
- Time domain needs to be solved in 2+1 dimensions. (or solve coupled equations in 1+1D).

Introduction			Outlook
The trouble w	with Kerr		

- Linearized Einstein equation in Lorenz gauge on a Kerr background is not separable.
- (Nor in any other known gauge. No Regge-Wheeler.)
- Can't solve linearized Einstein equation (directly) in frequency domain.
- Time domain needs to be solved in 2+1 dimensions. (or solve coupled equations in 1+1D).

Strategy		Outlook

Metric reconstruction in radiation gauge

Key facts

- Teukolsky equation for ψ_4 is separable.
- Wald's theorem: ψ_4 contains (almost) all information about a vacuum perturbation of the Kerr metric.

Chrzanowski-Cohen-Kegeles (CCK) reconstruction

Strategy		Outlook

Metric reconstruction in radiation gauge

Key facts

- Teukolsky equation for ψ_4 is separable.
- Wald's theorem: ψ_4 contains (almost) all information about a vacuum perturbation of the Kerr metric.

Chrzanowski-Cohen-Kegeles (CCK) reconstruction

$$\psi_{4} \longrightarrow \psi_{\text{ORG}} \longrightarrow h_{\mu\nu}^{\text{ORG}}$$
$$n^{\mu}h_{\mu\nu}^{\text{ORG}} = 0$$
$$g^{\mu\nu}h_{\mu\nu}^{\text{ORG}} = 0$$

Self-force in radiation gauge

• Self force formalism originally formulated in Lorenz gauge.

- Later extended to gauges related to Lorenz by a continuous [Barack&Ori, 2001] or bounded [Gralla&Wald, 2008, 2011] gauge transformation.
- Radiation gauge is not in these classes of gauge.
- [Pound,Merlin&Barack, 2013] derived transformation to a 'locally Lorenz' gauge, deriving a mode-sum formula that takes a radiation gauge metric perturbation as its input.

- Self force formalism originally formulated in Lorenz gauge.
- Later extended to gauges related to Lorenz by a continuous [Barack&Ori, 2001] or bounded [Gralla&Wald, 2008, 2011] gauge transformation.
- Radiation gauge is not in these classes of gauge.
- [Pound,Merlin&Barack, 2013] derived transformation to a 'locally Lorenz' gauge, deriving a mode-sum formula that takes a radiation gauge metric perturbation as its input.

- Self force formalism originally formulated in Lorenz gauge.
- Later extended to gauges related to Lorenz by a continuous [Barack&Ori, 2001] or bounded [Gralla&Wald, 2008, 2011] gauge transformation.
- Radiation gauge is not in these classes of gauge.
- [Pound,Merlin&Barack, 2013] derived transformation to a 'locally Lorenz' gauge, deriving a mode-sum formula that takes a radiation gauge metric perturbation as its input.

- Self force formalism originally formulated in Lorenz gauge.
- Later extended to gauges related to Lorenz by a continuous [Barack&Ori, 2001] or bounded [Gralla&Wald, 2008, 2011] gauge transformation.
- Radiation gauge is not in these classes of gauge.
- [Pound,Merlin&Barack, 2013] derived transformation to a 'locally Lorenz' gauge, deriving a mode-sum formula that takes a radiation gauge metric perturbation as its input.

Method

Outlook

Method of extended homogeneous solutions

• In the vacuum regions the solution to the Teukolsky equation can be written:

$$\psi_{4}^{\pm} = \frac{\rho^{4}}{\sqrt{2\pi}} \sum_{lmn} Z_{lmn}^{\pm} - 2R_{lmn}^{\pm}(r) - 2S_{lmn}(z)e^{i(m\phi - \omega_{mn}t)}$$

- Homogeneous radial solutions, -2R[±]_{lmn}, are obtained as series of hypergeometric units using the Mano-Suzuki-Tagasugi (MST) formalism.
- The Z[±]_{lmn} are calculated using variation of parameters

$$\int_{mn}^{r_{\max}} = \int_{r_{\min}}^{r_{\max}} \frac{-2R_{lmn}^{\mp}(r) - 2T_{lmn}(r)}{W[-2R_{lmn}^{+}, -2R_{lmn}^{-}](r)} dr$$

• In the vacuum regions the solution to the Teukolsky equation can be written:

$$\psi_{4}^{\pm} = \frac{\rho^{4}}{\sqrt{2\pi}} \sum_{lmn} Z_{lmn-2}^{\pm} R_{lmn}^{\pm}(r) {}_{-2} S_{lmn}(z) e^{i(m\phi - \omega_{mn}t)}$$

 Homogeneous radial solutions, -2R[±]_{lmn}, are obtained as series of hypergeometric units using the Mano-Suzuki-Tagasugi (MST) formalism.

The Z[±]_{lmn} are calculated using variation of parameters

$$n = \int_{r_{\min}}^{r_{\max}} \frac{-2R_{lmn}^{\mp}(r) - 2T_{lmn}(r)}{W[-2R_{lmn}^{+}, -2R_{lmn}^{-}](r)} dr$$

• In the vacuum regions the solution to the Teukolsky equation can be written:

$$\psi_{4}^{\pm} = \frac{\rho^{4}}{\sqrt{2\pi}} \sum_{lmn} Z_{lmn-2}^{\pm} R_{lmn}^{\pm}(r) {}_{-2} S_{lmn}(z) e^{i(m\phi - \omega_{mn}t)}$$

- Homogeneous radial solutions, -2R[±]_{lmn}, are obtained as series of hypergeometric units using the Mano-Suzuki-Tagasugi (MST) formalism.
- The Z[±]_{lmn} are calculated using variation of parameters

$$Z_{lmn}^{\pm} = \int_{r_{\min}}^{r_{\max}} \frac{-2R_{lmn}^{\mp}(r) - 2T_{lmn}(r)}{W[-2R_{lmn}^{+}, -2R_{lmn}^{-}](r)} dr$$

$$\Psi_{ORG}^{\pm} = \frac{1}{\sqrt{2\pi}} \sum_{lmn} \Psi_{lmn\,2}^{\pm} R_{lmn}^{\pm}(r) {}_{2}S_{lmn}(z) e^{i(m\phi - \omega_{mn}t)}$$

In addition

$$\mathcal{D}^4 \bar{\Psi}_{ORG} = \rho^{-4} \psi_4$$

- \mathcal{D}^4 separates over Teukolsky modes, so inversion reduces to inverting 2-by-2 matrix for each mode.
- Can be done analytically.[Ori, 2001]

$$\Psi_{ORG}^{\pm} = \frac{1}{\sqrt{2\pi}} \sum_{lmn} \Psi_{lmn\,2}^{\pm} R_{lmn}^{\pm}(r) {}_{2}S_{lmn}(z) e^{i(m\phi - \omega_{mn}t)}$$

In addition

$$\mathcal{D}^4 \bar{\Psi}_{ORG} = \rho^{-4} \psi_4$$

 D⁴ separates over Teukolsky modes, so inversion reduces to inverting 2-by-2 matrix for each mode.

• Can be done analytically.[Ori, 2001]

$$\Psi_{ORG}^{\pm} = \frac{1}{\sqrt{2\pi}} \sum_{lmn} \Psi_{lmn\,2}^{\pm} R_{lmn}^{\pm}(r) {}_{2}S_{lmn}(z) e^{i(m\phi - \omega_{mn}t)}$$

In addition

$$\mathcal{D}^4 \bar{\Psi}_{ORG} = \rho^{-4} \psi_4$$

 D⁴ separates over Teukolsky modes, so inversion reduces to inverting 2-by-2 matrix for each mode.

• Can be done analytically.[Ori, 2001]

$$\Psi_{ORG}^{\pm} = \frac{1}{\sqrt{2\pi}} \sum_{lmn} \Psi_{lmn\,2}^{\pm} R_{lmn}^{\pm}(r) {}_{2}S_{lmn}(z) e^{i(m\phi - \omega_{mn}t)}$$

In addition

$$\mathcal{D}^4 \bar{\Psi}_{ORG} = \rho^{-4} \psi_4$$

- \mathcal{D}^4 separates over Teukolsky modes, so inversion reduces to inverting 2-by-2 matrix for each mode.
- Can be done analytically.[Ori, 2001]

$$h^{ORG}_{\mu
u} = \hat{\mathcal{H}}^{ORG}_{\mu
u} \Psi^{ORG} + c.c.$$

Construct expression for *I*-modes observable with following steps:

- **1** Expand ${}_2S_{lmn} = \sum_{l_2} (b_{mn})_{ll_2} {}_2Y_{l_2mn}$.
 - Apply differential operators replacing $\partial_{\cos\theta}$ with spin lowering operator.
 - Expand $_{s}Y_{l_{2}mn} = \frac{1}{\sin^{|s|/2}\theta}\sum_{l_{2}}(\mathcal{A}_{sm})_{l_{2}}Y_{lm}$.
 -) Taylor expand coefficient in $z = \cos \theta$.
 - Drop z^2 and higher terms.

 ψ_4

 $\Psi_{\rm ORG}$

Observable *I*-modes

I-mode regularization

Tail estimate

Completion

$$h_{\mu
u}^{ORG} = \hat{\mathcal{H}}_{\mu
u}^{ORG} \Psi^{ORG} + c.c.$$

- **1** Expand $_2S_{lmn} = \sum_{l_2} (b_{mn})_{ll_2} {}_2Y_{l_2mn}$.
 - Apply differential operators replacing ∂_{cos θ} with spin lowering operator.
 - 3 Expand $_sY_{l_2mn}=rac{1}{\sin^{|s|/2} heta}\sum_{l_2}(\mathcal{A}_{sm})_{ll_2}\ Y_{lm}.$
 - Taylor expand coefficient in $z = \cos \theta$.
 - Drop z^2 and higher terms.

$$h^{ORG}_{\mu
u} = \hat{\mathcal{H}}^{ORG}_{\mu
u} \Psi^{ORG} + c.c.$$

- **1** Expand $_2S_{lmn} = \sum_{l_2} (b_{mn})_{ll_2} {}_2Y_{l_2mn}$.
- **2** Apply differential operators replacing $\partial_{\cos\theta}$ with spin lowering operator.
 - Expand $_{s}Y_{l_{2}mn} = \frac{1}{\sin^{|s|/2}\theta} \sum_{l_{2}} (\mathcal{A}_{sm})_{ll_{2}} Y_{lm}$
 -) Taylor expand coefficient in $z = \cos \theta$
 - Drop z^2 and higher terms.

$$h^{ORG}_{\mu
u} = \hat{\mathcal{H}}^{ORG}_{\mu
u} \Psi^{ORG} + c.c.$$

- **1** Expand $_2S_{lmn} = \sum_{l_2} (b_{mn})_{ll_2} {}_2Y_{l_2mn}$.
- **2** Apply differential operators replacing $\partial_{\cos\theta}$ with spin lowering operator.
- **3** Expand ${}_{s}Y_{l_{2}mn} = \frac{1}{\sin^{|s|/2}\theta} \sum_{l_{2}} (\mathcal{A}_{sm})_{ll_{2}} Y_{lm}.$
 -) Taylor expand coefficient in $z = \cos \theta$.
 - Drop z^2 and higher terms.

$$h^{ORG}_{\mu
u} = \hat{\mathcal{H}}^{ORG}_{\mu
u} \Psi^{ORG} + c.c.$$

- **1** Expand $_2S_{lmn} = \sum_{l_2} (b_{mn})_{ll_2} {}_2Y_{l_2mn}$.
- **2** Apply differential operators replacing $\partial_{\cos\theta}$ with spin lowering operator.
- **3** Expand ${}_{s}Y_{l_{2}mn} = \frac{1}{\sin^{|s|/2}\theta} \sum_{l_{2}} (\mathcal{A}_{sm})_{ll_{2}} Y_{lm}.$
- **4** Taylor expand coefficient in $z = \cos \theta$.
- **5** Drop z^2 and higher terms.

- After subtracting regularization parameters, the sum over *l*-modes still only converges as $1/l_{max}$.
- The 'tail' of the sum can be estimated by fitting a power series in 1/*I* to the partial sums of the known *I*-modes.
- Number of terms in power series that can be fitted accurately grows with *I*_{max}. (If *I*-modes are accurate enough.)
- Effective convergence is faster than any polynomial in *I_{max}*.

- After subtracting regularization parameters, the sum over *l*-modes still only converges as $1/l_{max}$.
- The 'tail' of the sum can be estimated by fitting a power series in 1// to the partial sums of the known /-modes.
- Number of terms in power series that can be fitted accurately grows with *I*_{max}. (If *I*-modes are accurate enough.)
- Effective convergence is faster than any polynomial in *I_{max}*.

- After subtracting regularization parameters, the sum over *l*-modes still only converges as $1/l_{max}$.
- The 'tail' of the sum can be estimated by fitting a power series in 1/*I* to the partial sums of the known *I*-modes.
- Number of terms in power series that can be fitted accurately grows with *I*_{max}. (If *I*-modes are accurate enough.)
- Effective convergence is faster than any polynomial in *I_{max}*.

- After subtracting regularization parameters, the sum over *l*-modes still only converges as $1/l_{max}$.
- The 'tail' of the sum can be estimated by fitting a power series in 1/*I* to the partial sums of the known *I*-modes.
- Number of terms in power series that can be fitted accurately grows with *I*_{max}. (If *I*-modes are accurate enough.)
- Effective convergence is faster than any polynomial in I_{max} .

		Results	Outlook
Generalized	redshift		

Effective conservative metric:

$$g_1 \equiv g_0 + h^R_{cons,\mu
u}$$

Generalized redshift

$$U \equiv \langle \frac{\mathrm{d}t}{\mathrm{d}\tau} \rangle = \frac{T_r}{\mathcal{T}_r}$$

Compare at fixed orbital frequencies: [Akcay et al.,2015]

$$\Delta U(\Omega_r,\Omega_\phi) = U_1(\Omega_r,\Omega_\phi) - U_0(\Omega_r,\Omega_\phi) = rac{\mathcal{T}_r}{2\mu\mathcal{T}_r}\langle h_{uu}^R
angle$$

Self-force corrections to eccentric orbits in Kerr

Method

Schwarzschild: Comparison with Lorenz gauge results

р	е	Here	Akcay et al. 2015	Barack and Sago 2011
10	0.10	-0.1277540232(10)	-0.1277540(3)	-0.1277554(7)
15	0.10	-0.07687063237(5)	-0.0768706(2)	-0.0768709(1)
20	0.10	-0.055221659739(6)	-0.05522166(7)	-0.05522177(4)
100	0.10	-0.010101234326660(2)	-0.0101012344(10)	_
10	0.20	-0.123647888(2)	-0.123648(3)	-0.1236493(7)
15	0.20	-0.07431375582(4)	-0.07431376(9)	-0.0743140(1)
20	0.20	-0.0534085449572(6)	-0.05340854(9)	-0.05340866(4)
100	0.20	-0.0097893279221005(14)	-0.0097893274(4)	_
10	0.30	-0.1168019818(2)	-0.1168020(6)	-0.1168034(6)
15	0.30	-0.07007684538(10)	-0.0700768(5)	-0.0700771(1)
20	0.30	-0.050403774160(6)	-0.05040377(4)	-0.05040388(4)
100	0.30	-0.009270280959(2)	-0.009270281(4)	_
10	0.40	-0.107220(6)	-0.107221(2)	-0.1072221(5)
15	0.40	-0.0641988(4)	-0.064199(1)	-0.0641991(1)
20	0.40	-0.0462337(4)	-0.0462337(9)	-0.04623383(4)
100	0.40	-0.0085452(4)	-0.0085453(2)	

	Results	Outlook

Schwarzschild: Comparison with PN

- Range of orbits with 100 and <math>0 < e < 0.4
- Get all known PN coefficients (3PN) with 5 digits of accuracy.

	Results	Outlook

Schwarzschild: Comparison with PN

- Range of orbits with 100 and <math>0 < e < 0.4
- Get all known PN coefficients (3PN) with 5 digits of accuracy.

	Results	Outlook

Schwarzschild: Comparison with PN

- Range of orbits with 100 and <math>0 < e < 0.4
- Get all known PN coefficients (3PN) with 5 digits of accuracy.

4PN				
	\times	p ⁻⁵	$p^{-5}\log p$	
	e^2	-345.37(5)	19.733(5)	
	e^4	737(4)	-48.6(4)	
	e^{6}	-185(12)	7(2)	

5PN

$$\frac{x \quad p^{-6} \quad p^{-6} \log p}{e^2 \quad -2000 \pm 400 \quad -40 \pm 20}$$

 Introduction
 Strategy
 Method
 Results
 Outlook

 Eccentric orbit in Kerr:
 n-mode convergence______

Introduction Strategy Method Results Outlook

Eccentric orbit in Kerr: *I*-mode convergence (regularization)

hr.					
	\mathbf{u}		ات		
	9				

Sample results: ΔU in Kerr

р	е	a = -0.9	a = 0.0	a = 0.9
$p_{\rm ISO} + 1$	0.00	-0.1591225238(2)	-0.2208475274(2)	-0.40871659(2)
$p_{\rm ISO} + 1$	0.10	-0.150998651(3)	-0.209375588(9)	-0.391205(6)
$p_{\rm ISO} + 1$	0.20	-0.142034175(2)	-0.195877797(5)	-0.3635027(6)
$p_{\rm ISO} + 1$	0.30	-0.13127905(3)	-0.179591180(7)	-0.327109(4)
$p_{\rm ISO} + 1$	0.40	-0.1182790(4)	-0.160212(3)	-0.283764(2)
$p_{\rm ISO} + 10$	0.00	-0.062991300291(4)	-0.07205505742909(0)	-0.09093033701(3)
$p_{\rm ISO} + 10$	0.10	-0.061183242(1)	-0.070241089(2)	-0.089218442(2)
$p_{\rm ISO} + 10$	0.20	-0.058180786(3)	-0.066951046(3)	-0.085406440(1)
$p_{\rm ISO} + 10$	0.30	-0.054043290(2)	-0.06226898(1)	-0.0796315937(2)
$p_{\rm ISO} + 10$	0.40	-0.048833176(5)	-0.0562888674(2)	-0.072058378(4)
$p_{\rm ISO} + 100$	0.00	-0.00939536223942(0)	-0.00961638326555(0)	-0.00994293246401(0)
$p_{\rm ISO} + 100$	0.10	-0.00927472002(8)	-0.00950017309(4)	-0.0098334067(4)
$p_{\rm ISO} + 100$	0.20	-0.0089653010(1)	-0.00918951172(9)	-0.0095209535(1)
$p_{\rm ISO} + 100$	0.30	-0.00846904194(5)	-0.00868616413(8)	-0.00900719351(3)
$p_{\rm ISO} + 100$	0.40	-0.007788207(3)	-0.00799229975(7)	-0.0082942072(9)
$p_{\rm ISO} + 1000$	0.00	-0.00099341331118(0)	-0.00099601693770(0)	-0.00099959564940(0)
$p_{\rm ISO} + 1000$	0.10	-0.000983179941(7)	-0.00098584074(1)	-0.000989496817(4)
$p_{\rm ISO}$ + 1000	0.20	-0.000953066056(2)	-0.000955719551(2)	-0.000959363369(3)
$p_{\rm ISO} + 1000$	0.30	-0.000903093610(8)	-0.000905672227(9)	-0.000909211662(8)
$p_{\rm ISO}$ + 1000	0.40	-0.0008332886(4)	-0.000835722608(2)	-0.000839062961(5)

Introduction Strategy Method Results Outlook

Self-force corrections to eccentric orbits in Kerr

Maarten van de Meent

		Outlook
с I ·		
Conclusions		

- MST + CCK forms powerful framework for frequency domain GSF calculations.
- First calculation of $\langle h_{uu} \rangle$ and GSF for eccentric orbits is Kerr spacetime.

What's next: generic orbits in Kerr!

		Outlook
Conclusions		

- MST + CCK forms powerful framework for frequency domain GSF calculations.
- First calculation of $\langle h_{uu}\rangle$ and GSF for eccentric orbits is Kerr spacetime.

What's next: generic orbits in Kerr!

		Outlook
Canalusiana		

- MST + CCK forms powerful framework for frequency domain GSF calculations.
- First calculation of $\langle h_{uu}\rangle$ and GSF for eccentric orbits is Kerr spacetime.

What's next: generic orbits in Kerr!

Self-force corrections to eccentric orbits in Kerr

Maarten van de Meent

		Outlook
I he end		

Thank you for listening!

For more details see

MvdM and AG Shah, arXiv:1506.04755

Self-force corrections to eccentric orbits in Kerr

Maarten van de Meent

n-mode convergence (*mn*-modes)

Interior vs. Exterior limit

Self-force corrections to eccentric orbits in Kerr