EVOLVING HIGH ECCENTRICITY INSPIRALS FLUXES FROM RAPIDLY ROTATING BLACK HOLES

Niels Warburton Collaborators: Thomas Osburn, Charles Evans, Seth Hopper Sam Gralla, Achilleas Porfyriadis

Capra 18, Kyoto 30th June 2015

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Part One: Evolving high-eccentricity inspirals

- Effects of the self-force
- Interpolation model
- Computing high eccentricity inspirals —

Hopman & Alexander ApJ 629 (2005) 362-372

 $\begin{array}{ll} \mathcal{O}(q^{-1}): & \text{Orbit-averaged dissipative component of the SF} \\ \mathcal{O}(q^{-1/2}): & \text{Resonances, oscillating SF no longer averages out} \\ \mathcal{O}(q^0): \left\{ \begin{array}{l} \text{Oscillatory component of the dissipative SF} \\ \text{Conservative component of the SF} \\ \text{Orbit-averaged dissipative piece of the second-order SF} \end{array} \right.$

Effects of the self-force

 $\begin{array}{lll} \mathcal{O}(q^{-1}): & \text{Orbit-averaged dissipative component} \\ \mathcal{O}(q^{-1/2}): & \frac{\text{Resonances, oscillating SF no longer averages out}}{\mathcal{O}(q^0): & \begin{cases} \text{Oscillatory component of the dissipative SF} \\ \text{Conservative component of the SF} \\ \frac{\text{Orbit-averaged dissipative piece of the second-order SF}}{\text{Orbit-averaged dissipative piece of the second-order SF}} \\ \end{array}$

$m_1 = 10^6 M_{\odot}$	$F^{\alpha} = \langle F_1^{\alpha} \rangle + F_{1(\text{osc})}^{\alpha} + \langle F_2^{\alpha} \rangle$			
$m_2 = 10 M_{\odot}$ $q = 10^{-5}$	Required Accuracy	10-7	10-3	10-3
	Code	RWZ 🦴	Lorenz 🔸	-
Goal: track phase	Code Accuracy	10-10-10-9	0 ^{- 0} - 0 ⁻³	-
evolution to within 0.01 radians	Hopper & Evans: Osburn et al: Phys. Rev. D 82.084010 Phys. Rev. D 90.104031			

Orbital parameterization Geometrically intuitive parameterization $p \equiv \frac{2r_{\max}r_{\min}}{M(r_{\max} + r_{\min})} \quad e \equiv \frac{r_{\max} - r_{\min}}{r_{\max} + r_{\min}}$ $r(t) = \frac{pM}{1 + e\cos[\chi(t) - \chi_0]}$

υ

one-to-one mapping: $(\mathcal{E}, \mathcal{L}) \leftrightarrow (p, e)$ Note: $(\mathcal{E}, \mathcal{L}) \rightarrow (\Omega_r, \Omega_{\varphi})$

is not one-to-one

Orbit evolution with the self-force

How good is our fit?

F^{α} =	$= \langle F_1^{\alpha} \rangle +$	- $F^{\alpha}_{1(\mathrm{osc})}$ +	- $\langle F_2^{\alpha} \rangle$
Required Accuracy	I 0 ⁻⁷	10-3	10-3
Code	RWZ	Lorenz	-
Code Accuracy	10-10-10-9	10-10-10-3	-

Orbit evolution with the self-force

Previous work used global fits. In this work we use local fitting to achieve high accuracy As the particle inspirals it moves from one region to another. Interpolate over containing box and 8 surrounding boxes. All interpolation coefficients pre-computed.

Importance of conservative effects

Evolution: $(p(v), e(v), \chi_0(v))$ Conservative only

 $r = \frac{p}{1 + e\cos(\chi - \chi_0)}$

Importance of conservative effects

Evolution: $(p(v), e(v), \chi_0(v))$ Conservative only

 $r = \frac{p}{1 + e\cos(\chi - \chi_0)}$

Part One: Evolving high-eccentricity inspirals Recap and future directions

This work

Part Two: Fluxes from rapidly rotating black holes

- Particle on the ISCO
- Analytic and numerical calculations
- Comparison of results

Particle on the ISCO

Parametrize using ${f \epsilon}$ for the spin: $\epsilon = \sqrt{1-a^2/M^2}$

Every non-extreme (ϵ >0) black hole has an ISCO

$$r_{\rm ISCO} = M\left(1 + \frac{1}{2^{1/3}}\epsilon^{2/3} + \mathcal{O}(\epsilon^{4/3})\right)$$

We put a particle on the ISCO and compute the power radiated as $\epsilon \rightarrow 0$:

Analytically, to leading-order in $\boldsymbol{\epsilon}$

$$\frac{d\mathcal{E}}{dt} = C\epsilon^p$$

Previous work estimated p=2/3.

We confirm, find interesting mode structure, and get C.

Numerically using a new high-precision Teukolsky code

Solve the Sasaki-Nakamura equation in Mathematica with new, more accurate boundary conditions

Analytic calculation

Different possible limits as $\epsilon \rightarrow 0$:

- BL exteme Kerr
- NHEK (near-Horizon-extremal-Kerr)
- near-NHEK

Hallmark of a singular perturbation problem. Solution: matched asymptotic expansions

Define dimensionless radial coord:

$$x = \frac{r - r_+}{r_+}$$
$$x_0 = 2^{1/3} \epsilon^{2/3}$$

far zone: x>>**ɛ**^{2/3}

$$x^{2}R''(x) + 2xR'(x) + \left[m^{2}(2+x+x^{2}/4) - K\right]R(x) = 0$$

near zone: x<<|

$$x(x+2\epsilon)R''(x) + 2(x+\epsilon)R'(x)\hat{V}R(x)$$

= $Nx_0\delta(x-x_0)$

Matching in overlap region ($\epsilon^{2/3} << x << 1$) gives the result

Results for fluxes (but not other quantities) turn out to be the same as a NHEK calculation. Can also derive the same formula from Kerr/CFT. See Porfryiadis and Strominger arXiv:1401.3746

Numerical calculation

Homogeneous Sasaki-Nakamura equation

$$\frac{dX}{dr_*^2} - F(r)\frac{dX}{dr_*} - U(r)X(r) = 0$$

Expand asymptotic behaviour as

$$X^{\infty} = e^{i\omega r_*} \sum_{k=0}^{k_{\max}^{\infty}} a_k^{\infty} (\omega r_{\text{out}})^{-k},$$

$$X^{H} = e^{-i(\omega - m\Omega_{H})r_{*}} \sum_{k=0}^{k_{\max}^{H}} a_{k}^{H} (r_{\mathrm{in}} - r_{+})^{k}$$

Previous authors have only used: $k_{\max}^{\infty} = 3$, $k_{\max}^{H} = 0$ We have the full recursion relations

> Algorithm (in Mathematica): (i) construct BCs (ii) solve homogeneous SN equation (iii) Transform to Teukolsky variables (iv) matching at the particle (v) compute the fluxes

Analytic Results

Formulae for the infinity
and horizon flux for the
scalar (s=0) and
gravitational (s=-2) case
$$\begin{aligned} \frac{d\mathcal{E}_{\infty}}{dt} &= C\epsilon^{p} \qquad p = \frac{4}{3} \operatorname{Re}[h] \\ h &= \frac{1}{2} + \sqrt{K - 2m^{2} + \frac{1}{4}} \\ spheroidal eigenvalue \end{aligned}$$
$$\begin{aligned} h &= \frac{1}{2} + \sqrt{K - 2m^{2} + \frac{1}{4}} \\ spheroidal eigenvalue \end{aligned}$$
$$\begin{aligned} \frac{d\mathcal{E}_{\infty}}{dt} &= C\epsilon^{p} \qquad p = \frac{4}{3} \operatorname{Re}[h] \\ h &= \frac{1}{2} + \sqrt{K - 2m^{2} + \frac{1}{4}} \\ \frac{d\mathcal{E}_{\infty}}{dt} &= \frac{m_{0}^{2}}{2^{6}3^{2}M^{2}} \frac{1}{|\mathcal{C}|^{2}} x_{0}^{p} e^{-|m|\pi} \frac{|\Gamma(h - im - s)|^{2}}{|\Gamma(2h)|^{2}} \left| \hat{\mathcal{M}} + \frac{b}{1 - \hat{b}} \frac{\Gamma(1 - h - im - s)}{\Gamma(1 - 2h)} \hat{\mathcal{W}} \right|^{2} \\ \dot{\mathcal{E}}_{\infty} &= \frac{m_{0}^{2}}{2^{5}3^{3}M^{2}} (3x_{0}m^{2}/2)^{2\operatorname{Re}[h]} e^{|m|\pi} \left| \frac{2h - 1}{1 - \hat{b}} \frac{\Gamma(h - im - s)\Gamma(h - im + s)}{\Gamma(2h)^{2}} \hat{\mathcal{W}} \right| \\ \frac{i - \frac{\Gamma(1 - 2h)^{2}}{\Gamma(2h - 1)^{2} \frac{\Gamma(h - im - s)}{\Gamma(1 - h - im - s)} \frac{\Gamma(h - im + s)}{\Gamma(1 - h - im - s)} \hat{\mathcal{W}} \\ \frac{i - \frac{\Gamma(1 - 2h)^{2}}{\Gamma(2h - 1)^{2} \frac{\Gamma(h - im - s)}{\Gamma(1 - h - im - s)} \frac{(3\pi m^{2})}{2} \frac{3^{n-1}}{2} \\ \frac{i + 2[(h^{2} - h + 6 - im)S + 4(2i + m)S' - 4S''] W_{im-2,h-\frac{1}{2}}(3im/2)}{\frac{i + (4 + 3im)S - 8iS' |W_{im-1,h-\frac{1}{2}}(3im/2)}{2} \\ \frac{i - 2[(h^{2} - h + 6 - im)S + 4(2i + m)S' - 4S''] M_{m-2,h-\frac{1}{2}}(3im/2)}{\frac{i - 2[(h^{2} - h + 6 - im)S + 4(2i + m)S' - 4S''] M_{m-2,h-\frac{1}{2}}(3im/2)}{2}} \\ \frac{i - 2[(h^{2} - h + 6 - im)S + 4(2i + m)S' - 4S''] M_{m-2,h-\frac{1}{2}}(3im/2)}{\frac{i - 2[(h^{2} - h + 6 - im)S + 4(2i + m)S' - 4S''] M_{m-2,h-\frac{1}{2}}(3im/2)}{2}} \\ \frac{i - 2[(h^{2} - h + 6 - im)S + 4(2i + m)S' - 4S''] M_{m-2,h-\frac{1}{2}}(3im/2)}{\frac{i - 2[(h^{2} - h + 6 - im)S + 4(2i + m)S' - 4S''] M_{m-2,h-\frac{1}{2}}(3im/2)}{2}} \\ \frac{i - 2[(h^{2} - h + 6 - im)S + 4(2i + m)S' - 4S''] M_{m-2,h-\frac{1}{2}}(3im/2)}{\frac{i - 2[(h^{2} - h + 6 - im)S + 4(2i + m)S' - 4S''] M_{m-2,h-\frac{1}{2}}(3im/2)}{\frac{i - 2[(h^{2} - h + 6 - im)S + 4(2i + m)S' - 4S''] M_{m-2,h-\frac{1}{2}}(3im/2)}{\frac{i - 2[(h^{2} - h + 6 - im)S + 4(2i + m)S' - 4S''] M_{m-2,h-\frac{1}{2}}(3im/2)}{\frac{i - 2[(h^{2} - h + 6 - im)S + 4(2i + m)S' - 4S''] M_{m-2,h-\frac{1}{2}}(3im/2)}{\frac{i - 2[(h^{2} - h + 6 - im)S + 4(2i + m)S' - 4S''] M_{m-2,h-\frac{1}{2}}(3$$

Analytic Results: mode structure

$$\frac{d\mathcal{E}_{\infty}}{dt} = C\epsilon^{p} \quad p = \frac{4}{3} \operatorname{Re}[h] \quad h = \frac{1}{2} + \sqrt{K - 2m^{2} + \frac{1}{4}}$$

If $K - 2m^{2} + \frac{1}{4} \le 0$, $p = \frac{2}{3}$
If not, $p > \frac{2}{3}$

- ➢ Dominant scaling (p=2/3) for m∼l for infinity flux
- Horizon flux scales as p=2/3 for all modes
- All modes with Re[h]=1/2 also have oscillations

Numerical comparison

Oscillations clear when you take the ratio of the fluxes
Inset shows absolute difference between analytic and numerical results for the flux ratio

Part Two: Fluxes from rapidly rotating black holes Recap and future directions

today

This work

- Fluxes for particle on the ISCO (i) analytically, to leading-order in the deviation from extremality and (ii) numerically to high accuracy
- Find excellent agreement between two methods
- Analytic formulae useful to check numerical codes

Future work

- Calculate local quantities both analytically and numerically e.g. ISCO shift
- Useful in study of cosmic censorship?

Colleoni's talk on Thursday