
EVOLVING HIGH 
ECCENTRICITY 

INSPIRALS

Niels Warburton
Collaborators:

Thomas Osburn, Charles Evans, Seth Hopper
Sam Gralla, Achilleas Porfyriadis

Capra 18, Kyoto
30th June 2015

FLUXES FROM 
RAPIDLY ROTATING 

BLACK HOLES 



Part One: Evolving high-eccentricity inspirals

Effects of the self-force
Interpolation model
Computing high eccentricity inspirals

Hopman & Alexander ApJ 629 (2005) 362-372



Effects of the self-force
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Orbit-averaged dissipative component O(q�1) :

Resonances, oscillating SF no longer averages outO(q�1/2) :
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Effects of the self-force

m1 = 106M�

m2 = 10M�

q = 10�5

Goal: track phase 
evolution to within 

0.01 radians
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Hopper & Evans: 
Phys. Rev. D 82.084010 

Osburn et al: 
Phys. Rev. D 90.104031 



Orbital parameterization
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Geometrically intuitive 
parameterization

one-to-one mapping:

Note:
is not one-to-one

(E ,L) $ (p, e)

(E ,L) ! (⌦r,⌦')



Orbit evolution with the self-force

u�r�u
↵ = F↵ =)

8
<

:

r0(⌧) = . . .
'0(⌧) = . . .
t0(⌧) = . . .

u�r�u
↵ = F↵ =)

8
<

:

p0(v) = fp(p, e, v, F r, F')
e0(v) = fe(p, e, v, F r, F')
�0
0(v) = f�0(p, e, v, F

r, F')

Osculating orbits with 
geodesic self-force

NW, S. Akcay, L. Barack, J. Gair and 
N. Sago: Phys. Rev. D 85.061501(R)



Orbit evolution with the self-force

Oscillatory interpolation: Log10HFt relative errorL
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How good is our fit?



Orbit evolution with the self-force

Previous work used global fits. In 
this work we use local fitting to 

achieve high accuracy

As the particle inspirals it moves from one 
region to another. Interpolate over containing 

box and 8 surrounding boxes. All 
interpolation coefficients pre-computed.



Importance of conservative effects
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Part One: Evolving high-eccentricity inspirals 
Recap and future directions

This work
High eccentricity inspirals into 
a Schwarzschild black hole

See: Pound, Wardell, 
Detweiler and Tanaka’s 

talks tomorrow

See Diener’s talk on 
Thursday

Kerr self-force: 
van de Meent’s talk

Open questions:
Second-order-in-the-mass-ratio effects
How good is the geodesic  
self-force approximation?
Inspirals in Kerr spacetime



Part Two: Fluxes from rapidly rotating black holes

Particle on the ISCO
Analytic and numerical calculations
Comparison of results

arXiv:1506.08496
today



Particle on the ISCO

Parametrize using ε for the spin: ✏ =
p

1� a2/M2

rISCO = M

✓
1 +

1

21/3
✏2/3 +O(✏4/3)

◆
Every non-extreme (ε>0) black hole has an ISCO

We put a particle on the ISCO and compute 
the power radiated as ε!0:

Analytically, to leading-order in ε Numerically using a new 
high-precision Teukolsky code

dE
dt

= C✏p

Previous work estimated p=2/3.

We confirm, find interesting mode structure, and get C.

Solve the Sasaki-Nakamura equation in 
Mathematica with new, more accurate 
boundary conditions



Analytic calculation Numerical calculation

dX
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� F (r)
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Homogeneous Sasaki-Nakamura equation
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Expand asymptotic behaviour as

Previous authors have only used: 
We have the full recursion relations

k1
max

= 3, kH
max

= 0

Algorithm (in Mathematica):
(i) construct BCs
(ii) solve homogeneous SN equation
(iii) Transform to Teukolsky variables
(iv)matching at the particle
(v) compute the fluxes

Different possible limits as ε!0:
• BL exteme Kerr
• NHEK (near-Horizon-extremal-Kerr)
• near-NHEK 

Hallmark of a singular perturbation problem.
Solution: matched asymptotic expansions

x

2
R

00(x) + 2xR0(x) +
⇥
m

2(2 + x+ x

2
/4)�K

⇤
R(x) = 0

far zone: x>>ε2/3

Define dimensionless radial coord:

near zone: x<<1
x(x+ 2✏)R00(x) + 2(x+ ✏)R0(x)V̂ R(x)

= Nx0�(x� x0)

Results for fluxes (but not other quantities) turn 
out to be the same as a NHEK calculation. Can 

also derive the same formula from Kerr/CFT. See 
Porfryiadis and Strominger arXiv:1401.3746

Matching in overlap region (ε2/3<<x<<1) gives 
the result 

x0 = 21/3✏2/3

x =
r � r+

r+



Analytic Results
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Ŵ = 2
⇥
(h2 � h+ 6� im)S + 4(2i+m)S0 � 4S00⇤Wim�2,h� 1

2
(3im/2)

+ [(4 + 3im)S � 8iS0]Wim�1,h� 1
2
(3im/2)

|C|2 = [(�2 + h)2 +m2][(�1 + h)2 +m2][h2 +m2][(1 + h)2 +m2]

Formulae for the infinity 
and horizon flux for the 

scalar (s=0) and 
gravitational (s=-2) case
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spheroidal eigenvalue

Gravitational case

dE1
dt

= C✏p

x0 = 21/3✏2/3



Analytic Results: mode structure

p =
4

3
Re[h] h =
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●= dominant (grav)
*=dominant (scalar)
●=subdominant (both)

If K � 2m2
+ 1/4  0, p = 2/3

If not, p > 2/3

dE1
dt

= C✏p

Analogous mode structure observed in 
study of near extremal quasi-normal modes

Yang etal arXiv:1212.3271,1307.8086



Numerical comparison

a/M=0.999999999999999999999999995 a/M=0.995

p=2/3 p=3.225427

Dominant scaling (p=2/3) for m~l for infinity flux
Horizon flux scales as p=2/3 for all modes
All modes with Re[h]=1/2 also have oscillations

dE1
dt

= C✏p



Numerical comparison

Oscillations clear when you take the ratio of the fluxes
Inset shows absolute difference between analytic  
and numerical results for the flux ratio



This work
Fluxes for particle on the ISCO (i) analytically, to  
leading-order in the deviation from extremality  
and (ii) numerically to high accuracy
Find excellent agreement between two methods
Analytic formulae useful to check numerical codes

Future work
Calculate local quantities both analytically 
and numerically e.g. ISCO shift
Useful in study of cosmic censorship?

Colleoni’s talk on 
Thursday

Part Two: Fluxes from rapidly rotating black holes 
Recap and future directions

arXiv:1506.08496
today


