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Second order conservative effects
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Ũ =U0(⌦)
h
1 + 1

2✏h
R1
u0u0

+ ✏2
�
1
2h

R2
u0u0

+ 3
8 (h

R1
u0u0

)2

� r3⌦
6M2 (F1r)

2
�
1� 3M/r⌦

��i
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Motivation: 
Second order
✤ Second order gravitational self-

force will require high accuracy  
⇒ Frequency domain.

First order metric perturbation ~ 1/(r-r0)
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Motivation: 
Second order
✤ Second order gravitational self-

force will require high accuracy  
⇒ Frequency domain.

✤ Spherical harmonic modes at 
first order finite on world line ⇒ 
mode-sum regularization.

First order modes ~ |r-r0|/(r-r0)
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Motivation: 
Second order
✤ Second order gravitational self-

force will require high accuracy  
⇒ Frequency domain.

✤ Spherical harmonic modes at 
first order finite on world line ⇒ 
mode-sum regularization.

✤ Second order metric more 
singular. Second order perturbation ~ 1/(r-r0)2
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Motivation: 
Second order
✤ Second order gravitational self-

force will require high accuracy  
⇒ Frequency domain.

✤ Spherical harmonic modes at 
first order finite on world line ⇒ 
mode-sum regularization.

✤ Second order metric more 
singular.

✤ Second order modes diverge 
logarithmically.

Second order modes ~ log|r-r0|
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Motivation: 
Second order
✤ Second order gravitational self-

force will require high accuracy  
⇒ Frequency domain.

✤ Spherical harmonic modes at 
first order finite on world line ⇒ 
mode-sum regularization.

✤ Second order metric more 
singular.

✤ Second order modes diverge 
logarithmically.

✤ Avoid computing retarded field 
on world line ⇒ effective source.

Second order modes ~ log|r-r0|
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Frequency-domain scalar mode-
sum self-force
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Frequency-domain scalar effective 
source

Find solutions to homogeneous equation which satisfy outgoing boundary conditions 
on horizon and at infinity, respectively

Construct inhomogeneous solutions using variation of parameters

where W is the Wronskian of homogeneous solutions
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Phys. Rev. D.  89:044046
arXiv: 1311.3104Results: scalar field
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Frequency-domain gravitational self-
force (Lorenz gauge) [arXiv:1505.07841]
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Results: Lorenz-gauge gravity [arXiv:1505.07841]



Results: Lorenz-gauge gravity

10

r0/M this work Akcay et al. [8, 30] rel. di↵.
hR
uu 6 �1.047185497 �1.0471854796(1) 2⇥ 10�7

F r 6 2.446653⇥ 10�2 2.4466495(4)⇥ 10�2 2⇥ 10�6

hR
uu 10 �0.48925802 �0.48925800172(4) 4⇥ 10�8

F r 10 1.3389466⇥ 10�2 1.3389465(7)⇥ 10�2 3⇥ 10�8

Table II. Sample results at r0 = 6M and r0 = 10M . Note
that the results in this table has been adimensionalized, i.e.,
hR
uu here ⌘ (M/µ)hR

uu and F r here ⌘ (M/µ)2F r

Figure 2. Results for the l = 2, m = 2 mode for a particle
orbiting at r0 = 6M . The dashed (blue) curve shows the

retarded field, h̄(i)ret
2,2 . The solid (red) curve shows the

residual field, h̄(i)res
2,2 . The punctures we use in this work

are su�ciently smooth to allow up to second deriatives
of the regular field to be calculated by taking derivatives
of the residual field at the particle. NW: Make this plot

more exciting. Maybe add insets show the field near

the particle and its first and second derivatives.

FIXME: this plot has been made with a 2gaussian, not

a 4gaussian as the window function.

for high-l the contributions to hR
uu and F r drop o↵ as l�4

and l�2, respectively.
In the next section we show how, by taking the limit

to the worldline in our e↵ective-source procedure, we can
formulte a tensor-mode mode-sum scheme.
NW: mention somewhere that only F r

requires

regularization

VI. MODE-SUM WITH TENSOR-HARMONIC
MODES

Barry to write

VII. CONCLUDING REMARKS
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Appendix A: Tensor-harmonic basis

For our tensor spherical-harmonic basis, Y
(i)lm
↵� ,

we use the definitions of Barack and Sago [4]
which is a slight modification of the basis used
by Barack and Lousto [3]. The key property
of the basis is that if forms an orthonormal
set NW: Barry has pointed out this is not true,

Y [3] integrated against itself gives f2, i.e.,

Z

⌘↵µ⌘�⌫
h

Y (i)lm
µ⌫

i⇤
Y

(j)l0m0

↵� d⌦ = �ij�ll0�mm0 (A1)

for i, j = 1, . . . , 10 and where ⌘↵µ ⌘
diag(1, f2, r�2, r�2 sin�2 ✓), an asterisk denotes complex
conjugation, and the integration is carried out over
a 2-sphere of constant r and t. Using this basis, any
covariant 2nd-rank sysmmetric tensor can be expanded
as

t↵� =
X

lm

10

X

i=1

t
(i)
lm(r, t)Y (i)lm
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[arXiv:1505.07841]



Tensor-mode regularisation

Punctures are directly relation to standard mode-sum regularisation
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Tensor-mode regularisation

Can regularize the tensor-harmonic modes directly - no mode coupling!

Can re-write this as a mode-sum formula

h̄R
µ⌫ =

" 1X

l=0
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!
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Compare with scalar-harmonic regularisation formula:
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where the h`m
µ⌫ are constructed by combining the h(i)

`m with
the spherical harmonics; explicit expressions are given
in Appendix A 6. The regularization parameters for the
metric perturbation are computed using
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where x
0

denotes the point on the worldline, i.e. r = r
0

and ↵ = 0 = �. The only non-zero contributions in our
case come from m0 = 0 in the scalar sector (i = 1, 3, 6),
m0 = ±1 in the vector sector (i = 4, 8), and m0 = ±2
in the tensor sector (i = 7, 10). The regularization para-
meters for the radial derivative of the metric perturbation
are computed using
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where, again, the only non-zero contributions in this case
come from m0 = 0 in the scalar sector (i = 1, 3, 6),
m0 = ±1 in the vector sector (i = 4, 8), and m0 = ±2 in
the tensor sector (i = 7, 10). Finally, the regularization
parameters for the ' derivative of the metric perturba-
tion are computed using
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where the only non-zero contributions in this case come
from m0 = ±1 for hP `m0

tr (i.e., i = 2) and m0 = (0,±2)
for hP `m0

rA (i.e., i = 5, 9). Evaluating these with the punc-
tures given in Appendix C yields the following tensor-
harmonic regularization parameters:
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where, recall, ⇤
1

and ⇤
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are given by Eqs. (4.9) and
(4.10), respectively, and where we have indicated with a

subscript the cases (h[�1]
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'',r) where a terms
is only non-zero above some minimum value of `. In all
of the above equations, to simplify the presentation we
have omitted an overall factor of the small mass µ.
Finally, we note that these expressions can be com-

bined to produce tensor-harmonic regularization para-
meters for the redshift invariant hµ⌫u

µu⌫ and the radial
component of the self-force. Doing so, we find
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where the h`m
µ⌫ are constructed by combining the h(i)
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the spherical harmonics; explicit expressions are given
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and ↵ = 0 = �. The only non-zero contributions in our
case come from m0 = 0 in the scalar sector (i = 1, 3, 6),
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where, again, the only non-zero contributions in this case
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where the only non-zero contributions in this case come
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Accurately modeling an extreme-mass-ratio inspiral requires knowledge of the second-order gravita-
tional self-force on the inspiraling small object. Recently, numerical puncture schemes have been
formulated to calculate this force, and their essential analytical ingredients have been derived from first
principles. However, the “puncture,” a local representation of the small object’s self-field, in each of these
schemes has been presented only in a local coordinate system centered on the small object, while a
numerical implementation will require the puncture in coordinates covering the entire numerical domain. In
this paper we provide an explicit covariant self-field as a local expansion in terms of Synge’s world
function. The self-field is written in the Lorenz gauge, in an arbitrary vacuum background, and in forms
suitable for both self-consistent and Gralla-Wald-type representations of the object’s trajectory. We
illustrate the local expansion’s utility by sketching the procedure of constructing from it a numerically
practical puncture in any chosen coordinate system.
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I. INTRODUCTION

Observation of extreme-mass-ratio inspirals (EMRIs) is
a central plank in plans for a space-based gravitational-
wave detector [1]. EMRIs, in which a compact object of
mass m orbits about and eventually falls into a massive
black hole of mass M ≫ m, will offer a unique probe of
strong-field dynamics and a detailed map of the spacetime
geometry near a black hole. However, an inspiral occurs on
the very long dynamical time scale M2=m, and to extract
information about an inspiral from an observed waveform,
one will require a model that accurately relates the wave-
form to the motion over that long time. For a physically
relevant mass ratio m=M ¼ 10−6, this translates to requir-
ing an accurate model covering ∼106 wave cycles.
Because of the drastically dissimilar length scales in

these systems, numerical relativity cannot adequately
model them even on short time scales. And because of
the strong fields and large velocities in play, post-
Newtonian theory is inapplicable. Instead, the most promi-
nent method of tackling the problem has been to apply the
gravitational self-force formalism [2,3], in which the small
object is treated as the source of a perturbation hμν ∼m on
the background spacetime gμν of the large black hole, and
hμν exerts a force back on the small object, accelerating it
away from test-particle, geodesic motion in gμν. It has long
been known [4] that within this formalism, accurately
modeling an inspiral on the long time scale ∼M2=m
requires knowledge of the smaller object’s acceleration
to second order in m, meaning garden variety linear
perturbation theory is insufficient. The veracity of this
claim can be seen from a simple scaling argument: if the
small object’s acceleration contains an error of order
δa ∼m2=M3, then after a time M2=m the error in its
position is δz ∼ t2δa ∼M (setting c ¼ G ¼ 1, as we do

throughout this paper). Therefore, to ensure that the errors
remain small (i.e., δz ≪ M), we must allow no error in the
acceleration at order m2. In other words, we must account
for the second-order self-force.1

In addition to its applications in the EMRI problem, the
second-order self-force promises to be a useful tool in
modeling other binary systems. At first order, numerical
self-force data have been fruitfully used to fix high-order
terms and otherwise free parameters in post-Newtonian
[6–9] and effective one-body [10–13] models, and the same
strategy could be employed at second order. Perhaps more
strikingly, at first order, there is compelling evidence that
the self-force formalism can be made accurate well outside
the extreme mass-ratio regime [8,14], which suggests that
at second order the self-force could be used to directly
model intermediate mass-ratio and potentially even com-
parable-mass binaries with reasonable accuracy.
After several exploratory studies of the second-order

problem [4,15–17], these prospects have recently been
brought substantially closer to realization, and the essential
analytical ingredients necessary for concrete calculations of
the second-order self-force are now available [18–21].
These ingredients are

(i) A local expression for the small object’s self-
field hSμν

(ii) An equation of motion for the small object’s center
of mass in terms of a certain effective field hRμν

Both results were derived from the Einstein equations via
rigorous methods of matched asymptotic expansions devel-
oped in Refs. [16,22]; for an overview, see the review [3] or

1A subtler scaling argument [5] shows that only a specific
piece of the second-order force is needed: the orbit-averaged
dissipative piece, which causes the largest long-term changes in
the orbit.
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any well-behaved space of functions; see Ref. [53] for a
recent discussion. Hence, the problem must be tackled
via an e↵ective, regular field equation such as (26).

B. Conservative dynamics

We are interested in the retarded solution to the cou-
pled system made up of Eqs. (1), (25), and (26). From
this solution, I wish to extract the conservative dynamics.
I now set about doing that.

In the coupled system, the retarded solution is rep-
resented by a triplet (zµ, hR

µ⌫

, h
µ⌫

). My goal is to con-

struct a certain “subsystem,” denoted by (ẑµ, ĥR

µ⌫

), that

is purely conservative. The pair (ẑµ, ĥR

µ⌫

) will be such

that ẑµ is precisely circular, ĥR

µ⌫

is time symmetric in an
appropriate sense, and ẑµ is a geodesic of the e↵ective
metric g̃

µ⌫

= g
µ⌫

+ ĥR

µ⌫

. This construction allows me
to define a redshift variable ũt by normalizing the four-
velocity in the same metric in which the orbit is geodesic.
Later, in Sec. VI, I will describe a construction that uses
hR

µ⌫

instead of ĥR

µ⌫

.
I first consider the consequences of replacing the qua-

sicircular orbit zµ with a precisely circular orbit ẑµ; this
can be thought of heuristically as “turning o↵” dissipa-
tion, although the ambiguity in that phrase will become
clear below. After working out the broad features of the
retarded field corresponding to a puncture moving on ẑµ,
I then extract a time-symmetrized e↵ective metric from
the retarded field and specify ẑµ to be a geodesic of that
metric.

1. Retarded field with a circular source

There is considerable gauge freedom within the Lorenz
gauge, meaning the conservative orbit can take multiple
coordinate forms. I assume the particular gauge used
is ‘nice’, in the sense that the circular orbit ẑµ can be
parametrized in the manifestly circular form (4). The
four-velocity ûµ is then given by ûµ = Ûkµ, as previewed
in Eq. (7), with Û ⌘ dt

d⌧

= ût.
To study the retarded field corresponding to this or-

bit,3 I leave the functionals hn

µ⌫

[z] and hRn

µ⌫

[z] unchanged,
simply replacing zµ with ẑµ. That is, the fields satisfy
the puncture scheme composed of Eqs. (25) and (26),
with the puncture moving on ẑµ instead of zµ. The en-
tire system then inherits the orbit’s helical symmetry. In
other words, the metric perturbations satisfy the Killing

3 For simplicity, I assume the retarded field in the Lorenz gauge is
unique, with no possibility of alteration by gauge modes. That
is, I assume the equation Eµ⌫ [hn] = Sn

µ⌫ has a unique retarded
solution for each source Sn

µ⌫ , although I am unaware of a proof
of that proposition in Schwarzschild.
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[ẑ] = 0, (33)
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can be written as
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These symmetries can be established concretely from
that of the orbit. The source of the first-order equation
in the form (28), evaluated in Schwarzschild coordinates,
reads
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where ✓A = (✓,�). This source has a time dependence
e�im⌦t, and from its form one can infer that the retarded
solution h1
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As in Sec. II, variables before a semicolon indicate the
point at which the field is evaluated, while those after
it indicate dependence on the source orbit. Y i`m

µ⌫

are
the tensor spherical harmonics defined by Barack and
Lousto [54], but any choice of tensor spherical harmonics
would do. Each of the harmonics depends on � only
through an exponential eim�, and to bring out the form
of h1

µ⌫

, I use that fact to rewrite Eq. (37) as
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with some appropriate functions H
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. In the
form (38), h1
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is manifestly helically symmetric. Natu-
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recent discussion. Hence, the problem must be tackled
via an e↵ective, regular field equation such as (26).

B. Conservative dynamics

We are interested in the retarded solution to the cou-
pled system made up of Eqs. (1), (25), and (26). From
this solution, I wish to extract the conservative dynamics.
I now set about doing that.

In the coupled system, the retarded solution is rep-
resented by a triplet (zµ, hR

µ⌫

, h
µ⌫

). My goal is to con-

struct a certain “subsystem,” denoted by (ẑµ, ĥR
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hR

µ⌫

instead of ĥR

µ⌫

.
I first consider the consequences of replacing the qua-

sicircular orbit zµ with a precisely circular orbit ẑµ; this
can be thought of heuristically as “turning o↵” dissipa-
tion, although the ambiguity in that phrase will become
clear below. After working out the broad features of the
retarded field corresponding to a puncture moving on ẑµ,
I then extract a time-symmetrized e↵ective metric from
the retarded field and specify ẑµ to be a geodesic of that
metric.

1. Retarded field with a circular source

There is considerable gauge freedom within the Lorenz
gauge, meaning the conservative orbit can take multiple
coordinate forms. I assume the particular gauge used
is ‘nice’, in the sense that the circular orbit ẑµ can be
parametrized in the manifestly circular form (4). The
four-velocity ûµ is then given by ûµ = Ûkµ, as previewed
in Eq. (7), with Û ⌘ dt

d⌧

= ût.
To study the retarded field corresponding to this or-

bit,3 I leave the functionals hn

µ⌫

[z] and hRn

µ⌫

[z] unchanged,
simply replacing zµ with ẑµ. That is, the fields satisfy
the puncture scheme composed of Eqs. (25) and (26),
with the puncture moving on ẑµ instead of zµ. The en-
tire system then inherits the orbit’s helical symmetry. In
other words, the metric perturbations satisfy the Killing

3 For simplicity, I assume the retarded field in the Lorenz gauge is
unique, with no possibility of alteration by gauge modes. That
is, I assume the equation Eµ⌫ [hn] = Sn

µ⌫ has a unique retarded
solution for each source Sn

µ⌫ , although I am unaware of a proof
of that proposition in Schwarzschild.

equations

L
k

h1

µ⌫

[ẑ] = 0, L
k

h2

µ⌫

[ẑ] = 0, (33)

and likewise for hRn

µ⌫

and hSn

µ⌫

. On ẑµ, these equations
can be written as

û⇢hR1

µ⌫,⇢

= 0, û⇢hR2

µ⌫,⇢

= 0. (34)

These symmetries can be established concretely from
that of the orbit. The source of the first-order equation
in the form (28), evaluated in Schwarzschild coordinates,
reads

T 1

µ⌫

[ẑ] =
mû

µ

û
⌫

r̂2Û
�(r � r̂)�(✓ � ⇡/2)�(�� ⌦t), (35)

which can be decomposed into ordinary scalar spherical
harmonics as

T 1

µ⌫

[ẑ] =
mû

µ

û
⌫

r̂2Û
�(r� r̂)

X

`m

Y ⇤
`m

(⇡/2,⌦t)Y
`m

(✓A), (36)

where ✓A = (✓,�). This source has a time dependence
e�im⌦t, and from its form one can infer that the retarded
solution h1

µ⌫

has an expansion

h1

µ⌫

(t, r, ✓A; ẑ) =
X

i`m

h
1i`m

(r; r̂)e�im⌦tY i`m

µ⌫

(r, ✓A),

(37)
where h

1i`m

satisfies the outgoing wave condition h
1i`m

⇠
e

ikr

⇤

r

at large r and the ingoing wave condition h
1i`m

⇠
e�ikr

⇤
at the horizon; here r⇤ is the tortoise coordinate.

As in Sec. II, variables before a semicolon indicate the
point at which the field is evaluated, while those after
it indicate dependence on the source orbit. Y i`m

µ⌫

are
the tensor spherical harmonics defined by Barack and
Lousto [54], but any choice of tensor spherical harmonics
would do. Each of the harmonics depends on � only
through an exponential eim�, and to bring out the form
of h1

µ⌫

, I use that fact to rewrite Eq. (37) as

h1

µ⌫

(t, r, ✓A; ẑ) =
X

i`m

H
1i`m

(r; r̂)eim(��⌦t)P i`m

µ⌫

(✓), (38)

with some appropriate functions H
1i`m

and P i`m

µ⌫

. In the
form (38), h1

µ⌫

is manifestly helically symmetric. Natu-
rally, hS1

µ⌫

and hR1

µ⌫

each possess this symmetry, and so
hR1

µ⌫

= constant on the worldline ẑµ, where � = ⌦t.
Similar considerations imply the helical symmetry of

h2

µ⌫

[ẑ]. We need only establish the symmetry of T 2

µ⌫

[ẑ]
and �2R

µ⌫

. The decomposition of T 2

µ⌫

[ẑ] is essentially
identical to that of T 1

µ⌫

, so I focus on �2R
µ⌫

[h1, h1]. By
substituting the decomposition of h1

µ⌫

from Eq. (37) into
Eq. (27), we can see that �2R

µ⌫

[h1, h1] has the form
of a sum over helically symmetric terms of the form
ei(m

0
+m

00
)(��⌦t). In fact, �2R

µ⌫

[h1, h1] has a harmonic
expansion

�2R
µ⌫

[h1, h1] =
X

i`m

�2R
i`m

(r; r̂)e�im⌦tY i`m

µ⌫

(r, ✓A)

(39)
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any well-behaved space of functions; see Ref. [53] for a
recent discussion. Hence, the problem must be tackled
via an e↵ective, regular field equation such as (26).

B. Conservative dynamics

We are interested in the retarded solution to the cou-
pled system made up of Eqs. (1), (25), and (26). From
this solution, I wish to extract the conservative dynamics.
I now set about doing that.

In the coupled system, the retarded solution is rep-
resented by a triplet (zµ, hR

µ⌫

, h
µ⌫

). My goal is to con-

struct a certain “subsystem,” denoted by (ẑµ, ĥR

µ⌫

), that

is purely conservative. The pair (ẑµ, ĥR

µ⌫

) will be such

that ẑµ is precisely circular, ĥR

µ⌫

is time symmetric in an
appropriate sense, and ẑµ is a geodesic of the e↵ective
metric g̃

µ⌫

= g
µ⌫

+ ĥR

µ⌫

. This construction allows me
to define a redshift variable ũt by normalizing the four-
velocity in the same metric in which the orbit is geodesic.
Later, in Sec. VI, I will describe a construction that uses
hR

µ⌫

instead of ĥR

µ⌫

.
I first consider the consequences of replacing the qua-

sicircular orbit zµ with a precisely circular orbit ẑµ; this
can be thought of heuristically as “turning o↵” dissipa-
tion, although the ambiguity in that phrase will become
clear below. After working out the broad features of the
retarded field corresponding to a puncture moving on ẑµ,
I then extract a time-symmetrized e↵ective metric from
the retarded field and specify ẑµ to be a geodesic of that
metric.

1. Retarded field with a circular source

There is considerable gauge freedom within the Lorenz
gauge, meaning the conservative orbit can take multiple
coordinate forms. I assume the particular gauge used
is ‘nice’, in the sense that the circular orbit ẑµ can be
parametrized in the manifestly circular form (4). The
four-velocity ûµ is then given by ûµ = Ûkµ, as previewed
in Eq. (7), with Û ⌘ dt

d⌧

= ût.
To study the retarded field corresponding to this or-

bit,3 I leave the functionals hn

µ⌫

[z] and hRn

µ⌫

[z] unchanged,
simply replacing zµ with ẑµ. That is, the fields satisfy
the puncture scheme composed of Eqs. (25) and (26),
with the puncture moving on ẑµ instead of zµ. The en-
tire system then inherits the orbit’s helical symmetry. In
other words, the metric perturbations satisfy the Killing

3 For simplicity, I assume the retarded field in the Lorenz gauge is
unique, with no possibility of alteration by gauge modes. That
is, I assume the equation Eµ⌫ [hn] = Sn

µ⌫ has a unique retarded
solution for each source Sn

µ⌫ , although I am unaware of a proof
of that proposition in Schwarzschild.

equations

L
k

h1

µ⌫

[ẑ] = 0, L
k

h2

µ⌫

[ẑ] = 0, (33)

and likewise for hRn

µ⌫

and hSn

µ⌫

. On ẑµ, these equations
can be written as

û⇢hR1

µ⌫,⇢

= 0, û⇢hR2

µ⌫,⇢

= 0. (34)

These symmetries can be established concretely from
that of the orbit. The source of the first-order equation
in the form (28), evaluated in Schwarzschild coordinates,
reads

T 1

µ⌫

[ẑ] =
mû

µ

û
⌫

r̂2Û
�(r � r̂)�(✓ � ⇡/2)�(�� ⌦t), (35)

which can be decomposed into ordinary scalar spherical
harmonics as

T 1

µ⌫

[ẑ] =
mû

µ

û
⌫

r̂2Û
�(r� r̂)

X

`m

Y ⇤
`m

(⇡/2,⌦t)Y
`m

(✓A), (36)

where ✓A = (✓,�). This source has a time dependence
e�im⌦t, and from its form one can infer that the retarded
solution h1

µ⌫

has an expansion

h1

µ⌫

(t, r, ✓A; ẑ) =
X

i`m

h
1i`m

(r; r̂)e�im⌦tY i`m

µ⌫

(r, ✓A),

(37)
where h

1i`m

satisfies the outgoing wave condition h
1i`m

⇠
e

ikr

⇤

r

at large r and the ingoing wave condition h
1i`m

⇠
e�ikr

⇤
at the horizon; here r⇤ is the tortoise coordinate.

As in Sec. II, variables before a semicolon indicate the
point at which the field is evaluated, while those after
it indicate dependence on the source orbit. Y i`m

µ⌫

are
the tensor spherical harmonics defined by Barack and
Lousto [54], but any choice of tensor spherical harmonics
would do. Each of the harmonics depends on � only
through an exponential eim�, and to bring out the form
of h1

µ⌫

, I use that fact to rewrite Eq. (37) as

h1

µ⌫

(t, r, ✓A; ẑ) =
X

i`m

H
1i`m

(r; r̂)eim(��⌦t)P i`m

µ⌫

(✓), (38)

with some appropriate functions H
1i`m

and P i`m

µ⌫

. In the
form (38), h1

µ⌫

is manifestly helically symmetric. Natu-
rally, hS1

µ⌫

and hR1

µ⌫

each possess this symmetry, and so
hR1

µ⌫

= constant on the worldline ẑµ, where � = ⌦t.
Similar considerations imply the helical symmetry of

h2

µ⌫

[ẑ]. We need only establish the symmetry of T 2

µ⌫

[ẑ]
and �2R

µ⌫

. The decomposition of T 2

µ⌫

[ẑ] is essentially
identical to that of T 1

µ⌫

, so I focus on �2R
µ⌫

[h1, h1]. By
substituting the decomposition of h1

µ⌫

from Eq. (37) into
Eq. (27), we can see that �2R

µ⌫

[h1, h1] has the form
of a sum over helically symmetric terms of the form
ei(m

0
+m

00
)(��⌦t). In fact, �2R

µ⌫

[h1, h1] has a harmonic
expansion

�2R
µ⌫

[h1, h1] =
X

i`m

�2R
i`m

(r; r̂)e�im⌦tY i`m

µ⌫

(r, ✓A)

(39)
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2h
µ
�
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any well-behaved space of functions; see Ref. [53] for a
recent discussion. Hence, the problem must be tackled
via an e↵ective, regular field equation such as (26).

B. Conservative dynamics

We are interested in the retarded solution to the cou-
pled system made up of Eqs. (1), (25), and (26). From
this solution, I wish to extract the conservative dynamics.
I now set about doing that.

In the coupled system, the retarded solution is rep-
resented by a triplet (zµ, hR

µ⌫

, h
µ⌫

). My goal is to con-

struct a certain “subsystem,” denoted by (ẑµ, ĥR

µ⌫

), that

is purely conservative. The pair (ẑµ, ĥR

µ⌫

) will be such

that ẑµ is precisely circular, ĥR

µ⌫

is time symmetric in an
appropriate sense, and ẑµ is a geodesic of the e↵ective
metric g̃

µ⌫

= g
µ⌫

+ ĥR

µ⌫

. This construction allows me
to define a redshift variable ũt by normalizing the four-
velocity in the same metric in which the orbit is geodesic.
Later, in Sec. VI, I will describe a construction that uses
hR

µ⌫

instead of ĥR

µ⌫

.
I first consider the consequences of replacing the qua-

sicircular orbit zµ with a precisely circular orbit ẑµ; this
can be thought of heuristically as “turning o↵” dissipa-
tion, although the ambiguity in that phrase will become
clear below. After working out the broad features of the
retarded field corresponding to a puncture moving on ẑµ,
I then extract a time-symmetrized e↵ective metric from
the retarded field and specify ẑµ to be a geodesic of that
metric.

1. Retarded field with a circular source

There is considerable gauge freedom within the Lorenz
gauge, meaning the conservative orbit can take multiple
coordinate forms. I assume the particular gauge used
is ‘nice’, in the sense that the circular orbit ẑµ can be
parametrized in the manifestly circular form (4). The
four-velocity ûµ is then given by ûµ = Ûkµ, as previewed
in Eq. (7), with Û ⌘ dt

d⌧

= ût.
To study the retarded field corresponding to this or-

bit,3 I leave the functionals hn

µ⌫

[z] and hRn

µ⌫

[z] unchanged,
simply replacing zµ with ẑµ. That is, the fields satisfy
the puncture scheme composed of Eqs. (25) and (26),
with the puncture moving on ẑµ instead of zµ. The en-
tire system then inherits the orbit’s helical symmetry. In
other words, the metric perturbations satisfy the Killing

3 For simplicity, I assume the retarded field in the Lorenz gauge is
unique, with no possibility of alteration by gauge modes. That
is, I assume the equation Eµ⌫ [hn] = Sn

µ⌫ has a unique retarded
solution for each source Sn

µ⌫ , although I am unaware of a proof
of that proposition in Schwarzschild.

equations

L
k

h1

µ⌫

[ẑ] = 0, L
k

h2

µ⌫

[ẑ] = 0, (33)

and likewise for hRn

µ⌫

and hSn

µ⌫

. On ẑµ, these equations
can be written as

û⇢hR1

µ⌫,⇢

= 0, û⇢hR2

µ⌫,⇢

= 0. (34)

These symmetries can be established concretely from
that of the orbit. The source of the first-order equation
in the form (28), evaluated in Schwarzschild coordinates,
reads

T 1

µ⌫

[ẑ] =
mû

µ

û
⌫

r̂2Û
�(r � r̂)�(✓ � ⇡/2)�(�� ⌦t), (35)

which can be decomposed into ordinary scalar spherical
harmonics as

T 1

µ⌫

[ẑ] =
mû

µ

û
⌫

r̂2Û
�(r� r̂)

X

`m

Y ⇤
`m

(⇡/2,⌦t)Y
`m

(✓A), (36)

where ✓A = (✓,�). This source has a time dependence
e�im⌦t, and from its form one can infer that the retarded
solution h1

µ⌫

has an expansion

h1

µ⌫

(t, r, ✓A; ẑ) =
X

i`m

h
1i`m

(r; r̂)e�im⌦tY i`m

µ⌫

(r, ✓A),

(37)
where h

1i`m

satisfies the outgoing wave condition h
1i`m

⇠
e

ikr

⇤

r

at large r and the ingoing wave condition h
1i`m

⇠
e�ikr

⇤
at the horizon; here r⇤ is the tortoise coordinate.

As in Sec. II, variables before a semicolon indicate the
point at which the field is evaluated, while those after
it indicate dependence on the source orbit. Y i`m

µ⌫

are
the tensor spherical harmonics defined by Barack and
Lousto [54], but any choice of tensor spherical harmonics
would do. Each of the harmonics depends on � only
through an exponential eim�, and to bring out the form
of h1

µ⌫

, I use that fact to rewrite Eq. (37) as

h1

µ⌫

(t, r, ✓A; ẑ) =
X

i`m

H
1i`m

(r; r̂)eim(��⌦t)P i`m

µ⌫

(✓), (38)

with some appropriate functions H
1i`m

and P i`m

µ⌫

. In the
form (38), h1

µ⌫

is manifestly helically symmetric. Natu-
rally, hS1

µ⌫

and hR1

µ⌫

each possess this symmetry, and so
hR1

µ⌫

= constant on the worldline ẑµ, where � = ⌦t.
Similar considerations imply the helical symmetry of

h2

µ⌫

[ẑ]. We need only establish the symmetry of T 2

µ⌫

[ẑ]
and �2R

µ⌫

. The decomposition of T 2

µ⌫

[ẑ] is essentially
identical to that of T 1

µ⌫

, so I focus on �2R
µ⌫

[h1, h1]. By
substituting the decomposition of h1

µ⌫

from Eq. (37) into
Eq. (27), we can see that �2R

µ⌫

[h1, h1] has the form
of a sum over helically symmetric terms of the form
ei(m

0
+m

00
)(��⌦t). In fact, �2R

µ⌫

[h1, h1] has a harmonic
expansion

�2R
µ⌫

[h1, h1] =
X

i`m

�2R
i`m

(r; r̂)e�im⌦tY i`m

µ⌫

(r, ✓A)

(39)
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any well-behaved space of functions; see Ref. [53] for a
recent discussion. Hence, the problem must be tackled
via an e↵ective, regular field equation such as (26).

B. Conservative dynamics

We are interested in the retarded solution to the cou-
pled system made up of Eqs. (1), (25), and (26). From
this solution, I wish to extract the conservative dynamics.
I now set about doing that.

In the coupled system, the retarded solution is rep-
resented by a triplet (zµ, hR

µ⌫

, h
µ⌫

). My goal is to con-

struct a certain “subsystem,” denoted by (ẑµ, ĥR

µ⌫

), that

is purely conservative. The pair (ẑµ, ĥR

µ⌫

) will be such

that ẑµ is precisely circular, ĥR

µ⌫

is time symmetric in an
appropriate sense, and ẑµ is a geodesic of the e↵ective
metric g̃

µ⌫

= g
µ⌫

+ ĥR

µ⌫

. This construction allows me
to define a redshift variable ũt by normalizing the four-
velocity in the same metric in which the orbit is geodesic.
Later, in Sec. VI, I will describe a construction that uses
hR

µ⌫

instead of ĥR

µ⌫

.
I first consider the consequences of replacing the qua-

sicircular orbit zµ with a precisely circular orbit ẑµ; this
can be thought of heuristically as “turning o↵” dissipa-
tion, although the ambiguity in that phrase will become
clear below. After working out the broad features of the
retarded field corresponding to a puncture moving on ẑµ,
I then extract a time-symmetrized e↵ective metric from
the retarded field and specify ẑµ to be a geodesic of that
metric.

1. Retarded field with a circular source

There is considerable gauge freedom within the Lorenz
gauge, meaning the conservative orbit can take multiple
coordinate forms. I assume the particular gauge used
is ‘nice’, in the sense that the circular orbit ẑµ can be
parametrized in the manifestly circular form (4). The
four-velocity ûµ is then given by ûµ = Ûkµ, as previewed
in Eq. (7), with Û ⌘ dt

d⌧

= ût.
To study the retarded field corresponding to this or-

bit,3 I leave the functionals hn

µ⌫

[z] and hRn

µ⌫

[z] unchanged,
simply replacing zµ with ẑµ. That is, the fields satisfy
the puncture scheme composed of Eqs. (25) and (26),
with the puncture moving on ẑµ instead of zµ. The en-
tire system then inherits the orbit’s helical symmetry. In
other words, the metric perturbations satisfy the Killing

3 For simplicity, I assume the retarded field in the Lorenz gauge is
unique, with no possibility of alteration by gauge modes. That
is, I assume the equation Eµ⌫ [hn] = Sn

µ⌫ has a unique retarded
solution for each source Sn

µ⌫ , although I am unaware of a proof
of that proposition in Schwarzschild.

equations

L
k

h1

µ⌫

[ẑ] = 0, L
k

h2

µ⌫

[ẑ] = 0, (33)

and likewise for hRn

µ⌫

and hSn

µ⌫

. On ẑµ, these equations
can be written as

û⇢hR1

µ⌫,⇢

= 0, û⇢hR2

µ⌫,⇢

= 0. (34)

These symmetries can be established concretely from
that of the orbit. The source of the first-order equation
in the form (28), evaluated in Schwarzschild coordinates,
reads

T 1

µ⌫

[ẑ] =
mû

µ

û
⌫

r̂2Û
�(r � r̂)�(✓ � ⇡/2)�(�� ⌦t), (35)

which can be decomposed into ordinary scalar spherical
harmonics as

T 1

µ⌫

[ẑ] =
mû

µ

û
⌫

r̂2Û
�(r� r̂)

X

`m

Y ⇤
`m

(⇡/2,⌦t)Y
`m

(✓A), (36)

where ✓A = (✓,�). This source has a time dependence
e�im⌦t, and from its form one can infer that the retarded
solution h1

µ⌫

has an expansion

h1

µ⌫

(t, r, ✓A; ẑ) =
X

i`m

h
1i`m

(r; r̂)e�im⌦tY i`m

µ⌫

(r, ✓A),

(37)
where h

1i`m

satisfies the outgoing wave condition h
1i`m

⇠
e

ikr

⇤

r

at large r and the ingoing wave condition h
1i`m

⇠
e�ikr

⇤
at the horizon; here r⇤ is the tortoise coordinate.

As in Sec. II, variables before a semicolon indicate the
point at which the field is evaluated, while those after
it indicate dependence on the source orbit. Y i`m

µ⌫

are
the tensor spherical harmonics defined by Barack and
Lousto [54], but any choice of tensor spherical harmonics
would do. Each of the harmonics depends on � only
through an exponential eim�, and to bring out the form
of h1

µ⌫

, I use that fact to rewrite Eq. (37) as

h1

µ⌫

(t, r, ✓A; ẑ) =
X

i`m

H
1i`m

(r; r̂)eim(��⌦t)P i`m

µ⌫

(✓), (38)

with some appropriate functions H
1i`m

and P i`m

µ⌫

. In the
form (38), h1

µ⌫

is manifestly helically symmetric. Natu-
rally, hS1

µ⌫

and hR1

µ⌫

each possess this symmetry, and so
hR1

µ⌫

= constant on the worldline ẑµ, where � = ⌦t.
Similar considerations imply the helical symmetry of

h2

µ⌫

[ẑ]. We need only establish the symmetry of T 2

µ⌫

[ẑ]
and �2R

µ⌫

. The decomposition of T 2

µ⌫

[ẑ] is essentially
identical to that of T 1

µ⌫

, so I focus on �2R
µ⌫

[h1, h1]. By
substituting the decomposition of h1

µ⌫

from Eq. (37) into
Eq. (27), we can see that �2R

µ⌫

[h1, h1] has the form
of a sum over helically symmetric terms of the form
ei(m

0
+m

00
)(��⌦t). In fact, �2R

µ⌫

[h1, h1] has a harmonic
expansion

�2R
µ⌫

[h1, h1] =
X

i`m

�2R
i`m

(r; r̂)e�im⌦tY i`m

µ⌫

(r, ✓A)

(39)



Second order Ricci tensor

�2R↵� [h
1ret, h1ret] =

�2R↵� [h
1R, h1R]

+ 2�2R↵� [h
1R, h1S]

+ �2R↵� [h
1S, h1S]

mode coupling

mode coupling

mode decomposition (c.f. hS2)
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any well-behaved space of functions; see Ref. [53] for a
recent discussion. Hence, the problem must be tackled
via an e↵ective, regular field equation such as (26).

B. Conservative dynamics

We are interested in the retarded solution to the cou-
pled system made up of Eqs. (1), (25), and (26). From
this solution, I wish to extract the conservative dynamics.
I now set about doing that.

In the coupled system, the retarded solution is rep-
resented by a triplet (zµ, hR

µ⌫

, h
µ⌫

). My goal is to con-

struct a certain “subsystem,” denoted by (ẑµ, ĥR

µ⌫

), that

is purely conservative. The pair (ẑµ, ĥR

µ⌫

) will be such

that ẑµ is precisely circular, ĥR

µ⌫

is time symmetric in an
appropriate sense, and ẑµ is a geodesic of the e↵ective
metric g̃

µ⌫

= g
µ⌫

+ ĥR

µ⌫

. This construction allows me
to define a redshift variable ũt by normalizing the four-
velocity in the same metric in which the orbit is geodesic.
Later, in Sec. VI, I will describe a construction that uses
hR

µ⌫

instead of ĥR

µ⌫

.
I first consider the consequences of replacing the qua-

sicircular orbit zµ with a precisely circular orbit ẑµ; this
can be thought of heuristically as “turning o↵” dissipa-
tion, although the ambiguity in that phrase will become
clear below. After working out the broad features of the
retarded field corresponding to a puncture moving on ẑµ,
I then extract a time-symmetrized e↵ective metric from
the retarded field and specify ẑµ to be a geodesic of that
metric.

1. Retarded field with a circular source

There is considerable gauge freedom within the Lorenz
gauge, meaning the conservative orbit can take multiple
coordinate forms. I assume the particular gauge used
is ‘nice’, in the sense that the circular orbit ẑµ can be
parametrized in the manifestly circular form (4). The
four-velocity ûµ is then given by ûµ = Ûkµ, as previewed
in Eq. (7), with Û ⌘ dt

d⌧

= ût.
To study the retarded field corresponding to this or-

bit,3 I leave the functionals hn

µ⌫

[z] and hRn

µ⌫

[z] unchanged,
simply replacing zµ with ẑµ. That is, the fields satisfy
the puncture scheme composed of Eqs. (25) and (26),
with the puncture moving on ẑµ instead of zµ. The en-
tire system then inherits the orbit’s helical symmetry. In
other words, the metric perturbations satisfy the Killing

3 For simplicity, I assume the retarded field in the Lorenz gauge is
unique, with no possibility of alteration by gauge modes. That
is, I assume the equation Eµ⌫ [hn] = Sn

µ⌫ has a unique retarded
solution for each source Sn

µ⌫ , although I am unaware of a proof
of that proposition in Schwarzschild.

equations

L
k

h1

µ⌫

[ẑ] = 0, L
k

h2

µ⌫

[ẑ] = 0, (33)

and likewise for hRn

µ⌫

and hSn

µ⌫

. On ẑµ, these equations
can be written as

û⇢hR1

µ⌫,⇢

= 0, û⇢hR2

µ⌫,⇢

= 0. (34)

These symmetries can be established concretely from
that of the orbit. The source of the first-order equation
in the form (28), evaluated in Schwarzschild coordinates,
reads

T 1

µ⌫

[ẑ] =
mû

µ

û
⌫

r̂2Û
�(r � r̂)�(✓ � ⇡/2)�(�� ⌦t), (35)

which can be decomposed into ordinary scalar spherical
harmonics as

T 1

µ⌫

[ẑ] =
mû

µ

û
⌫

r̂2Û
�(r� r̂)

X

`m

Y ⇤
`m

(⇡/2,⌦t)Y
`m

(✓A), (36)

where ✓A = (✓,�). This source has a time dependence
e�im⌦t, and from its form one can infer that the retarded
solution h1

µ⌫

has an expansion

h1

µ⌫

(t, r, ✓A; ẑ) =
X

i`m

h
1i`m

(r; r̂)e�im⌦tY i`m

µ⌫

(r, ✓A),

(37)
where h

1i`m

satisfies the outgoing wave condition h
1i`m

⇠
e

ikr

⇤

r

at large r and the ingoing wave condition h
1i`m

⇠
e�ikr

⇤
at the horizon; here r⇤ is the tortoise coordinate.

As in Sec. II, variables before a semicolon indicate the
point at which the field is evaluated, while those after
it indicate dependence on the source orbit. Y i`m

µ⌫

are
the tensor spherical harmonics defined by Barack and
Lousto [54], but any choice of tensor spherical harmonics
would do. Each of the harmonics depends on � only
through an exponential eim�, and to bring out the form
of h1

µ⌫

, I use that fact to rewrite Eq. (37) as

h1

µ⌫

(t, r, ✓A; ẑ) =
X

i`m

H
1i`m

(r; r̂)eim(��⌦t)P i`m

µ⌫

(✓), (38)

with some appropriate functions H
1i`m

and P i`m

µ⌫

. In the
form (38), h1

µ⌫

is manifestly helically symmetric. Natu-
rally, hS1

µ⌫

and hR1

µ⌫

each possess this symmetry, and so
hR1

µ⌫

= constant on the worldline ẑµ, where � = ⌦t.
Similar considerations imply the helical symmetry of

h2

µ⌫

[ẑ]. We need only establish the symmetry of T 2

µ⌫

[ẑ]
and �2R

µ⌫

. The decomposition of T 2

µ⌫

[ẑ] is essentially
identical to that of T 1

µ⌫

, so I focus on �2R
µ⌫

[h1, h1]. By
substituting the decomposition of h1

µ⌫

from Eq. (37) into
Eq. (27), we can see that �2R

µ⌫

[h1, h1] has the form
of a sum over helically symmetric terms of the form
ei(m

0
+m

00
)(��⌦t). In fact, �2R

µ⌫

[h1, h1] has a harmonic
expansion

�2R
µ⌫

[h1, h1] =
X

i`m

�2R
i`m

(r; r̂)e�im⌦tY i`m

µ⌫

(r, ✓A)

(39)
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with radial functions given by a coupling formula of the
form

�2R
i`m

=
X

i

0
`

0
m

0

i

00
`

00
m

00

Di

0
`

0
m

0
i

00
`

00
m

00

i`m

[h
1i

0
`

0
m

0 , h
1i

00
`

00
m

00 ] , (40)

where Di

0
`

0
m

0
i

00
`

00
m

00

i`m

is a bilinear di↵erential operator.
The explicit, lengthy expressions in this coupling formula
will be given in a future publication [44]. Based on the
helical symmetry of its source, h2

µ⌫

can be expanded as

h2

µ⌫

(t, r, ✓A; ẑ) =
X

i`m

h
2i`m

(r; r̂)e�im⌦tY i`m

µ⌫

(r, ✓A) (41)

and put in the manifestly helically symmetric form

h2

µ⌫

(t, r, ✓A; ẑ) =
X

i`m

H
2i`m

(r; r̂)eim(��⌦t)P i`m

µ⌫

(✓), (42)

and likewise for hS2

µ⌫

and hR2

µ⌫

.

2. Time-symmetrized e↵ective metric

At this point I still have not specified the equation of
motion determining ẑµ; I have merely stated that the
orbit is circular. Because I have neglected all the dis-
sipative forces in Eq. (1), clearly ẑµ cannot satisfy the
geodesic equation (3) in the e↵ective metric g

µ⌫

+hR

µ⌫

[ẑ],
which will include dissipative terms. I now construct an
e↵ective metric g̃

µ⌫

[ẑ] = g
µ⌫

+ ĥR

µ⌫

[ẑ] in which ẑµ can be
made a geodesic.
If second-order e↵ects are ignored, the conservative

piece of Eq. (2) is uniquely defined by constructing the
force from a half-retarded-plus-half-advanced metric per-
turbation, and the orbit is a geodesic of the e↵ective met-
ric corresponding to that perturbation. Taking this as
my inspiration, I follow an analogous procedure to define
ĥR

µ⌫

.
Let h1

µ⌫

[ẑ] ⌘ h1ret

µ⌫

[ẑ] be the retarded solution to

Eq. (28) with source T 1

µ⌫

[ẑ], and let hadv

µ⌫

[ẑ] be the ad-
vanced solution. The harmonic modes of these two so-
lutions are related in a simple way. Referring to the
form (37), I note that once e�im⌦tY i`m

µ⌫

has been factored

out of Eq. (28), the radial functions hret/adv

1i`m

(r) satisfy a
linear di↵erential equation with real coe�cients and a
real source. The di↵erence between the two solutions is
produced solely by a complex conjugation of the bound-
ary conditions: the retarded solution satisfies the out-
going wave condition h

1i`m

/ eikr
⇤
at infinity and the

ingoing wave condition h
1i`m

/ e�ikr

⇤
at the horizon,

while the advanced solution satisfies the complex conju-
gate of these conditions. It follows that the modes of the
two solutions are related by4

hadv

1i`m

= hret⇤
1i`m

, (43)

4 This argument is due to Leor Barack.

where the asterisk denotes complex conjugation. There-
fore the radial coe�cients in the half-retarded-plus-half-
advanced solution, ĥ1

µ⌫

[ẑ] = 1

2

h1ret

µ⌫

[ẑ] + 1

2

h1adv

µ⌫

[ẑ], are

given by ĥ
1i`m

= 1

2

(h
1i`m

+ h⇤
1i`m

). Here I am interested
not in this global field, but in an e↵ective metric in a
neighbourhood of the worldline. Hence, corresponding
to the half-retarded-plus-half-advanced field I introduce
a regular field ĥR1

µ⌫

=
P

i`m

ĥR

1i`m

e�im⌦tY i`m

µ⌫

with radial
coe�cients

ĥR

1i`m

⌘ 1

2
(hR

1i`m

+ hR⇤
1i`m

). (44)

Now I do the same for the regular field at second or-
der. I consider the retarded solution to Eq. (26), with
�2R

µ⌫

[h1, h1] constructed from the first-order retarded
field, and with the second-order singular field that in-
volves hR1

µ⌫

in Eq. (23), not ĥR1

µ⌫

. From the regular field
hR2

µ⌫

in this solution, I define a time-symmetrized regular

field ĥR2

µ⌫

with radial coe�cients

ĥR

2i`m

⌘ 1

2
(hR

2i`m

+ hR⇤
2i`m

). (45)

This can be loosely thought of as the regular field cor-
responding to the half-retarded-plus-half-advanced solu-
tion to Eq. (26), but for reasons I discuss in Sec. VI, it
is unlikely that such a solution would be globally well
behaved.
The time-symmetrized regular fields ĥRn

µ⌫

together de-

fine an e↵ective metric g̃
µ⌫

= g
µ⌫

+ ĥR

µ⌫

, with

ĥR

µ⌫

⌘ ✏ĥR1

µ⌫

[ẑ] + ✏2ĥR2

µ⌫

[ẑ]. (46)

This e↵ective metric, unlike g
µ⌫

+ hR

µ⌫

[z], does not sat-
isfy the vacuum Einstein equation through second or-
der. It does not even satisfy the vacuum equation in the
sense that g

µ⌫

+hR

µ⌫

[ẑ] does (i.e., up to dissipation-driven
changes in zµ). One can infer this from the fact that
hR1

µ⌫

, not ĥR1

µ⌫

, is used in the source for Eq. (26), meaning

ĥR2

µ⌫

will satisfy E
µ⌫

[ĥR2] = 2�2R
µ⌫

[hR1, hR1] rather than

E
µ⌫

[ĥR2] = 2�2R
µ⌫

[ĥR1, ĥR1].

Nevertheless, ĥR

µ⌫

meets our needs: it is a time-
symmetric piece of the retarded field h

µ⌫

[ẑ], and ẑµ can
be made a geodesic of the associated metric g̃

µ⌫

. I will
now verify the latter fact by writing the geodesic equa-
tion in the form (1), but with ẑµ and ĥR

µ⌫

in place of zµ

and hR

µ⌫

, and checking that a circular orbit is a consistent
solution. For concreteness, I rewrite the equation here as

D2ẑµ

d⌧2
= F̂µ[ẑ], (47)

where F̂µ[ẑ] is given by Eq. (2) with the replacement
hR

µ⌫

! ĥR

µ⌫

. Explicitly evaluating the covariant deriva-
tives on the left-hand side leads to the algebraic equation

�µ
r

�r

uu

= F̂µ[ẑ], (48)



Which parts of the mode-decomposed 
singular field are needed?



Which parts of the mode-decomposed 
singular field are needed?

All of them!
[to O(ϵ)]
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FIG. 1. Dependence of ` = 0, m = 0 mode of the regularized �

2
on the approximation used for the Detweiler-Whiting singular

field. In all cases, the worldline is a circular orbit at r0 = 10M and terms through order ✏2 in the covariant expansion of the

singular field were included. We use a world-tube from r = 8M to r = 12M ; inside the worldtube we have (�

2
)

R
and outside

we have (�

2
)

ret
. Using only m0

= 0 and truncating at order �r2 when computing �

P
`m (top left), we get very simple analytic

expressions but unfortunately the sum over modes diverges both near and far from the worldline. Including m0
= ±2 we can

still do things analytically and it improves the situation near the worldline (top right). Similarly, including all terms in �r
(but with m0

= 0) can also be done analytically with somewhat more complicated expressions; this improves things far from

the worldline (bottom left). Including all terms in �r and all m0
modes makes things converge nicely everywhere (bottom

right). This had to be done using numerical quadrature, which is fine up to the ` = 10 modes shown but quickly starts to fail

for larger `.

FIG. 2. At �r = 0 we see that the convergence is a↵ected by how many m0
modes are included in the approximation to the

Detweiler-Whiting singular field (left). With �r = 0 the modes can be accurately computed numerically for all m0  `, in
which case we see that the sum converges quadratically with 1/�` (right).



Exact, analytic mode decomposition

For the scalar case, the modes of the singular field are given by

2

where ⇢2 ⌘ 2r20(r0�2M)�
r0�3M (�2+1�cos↵), �2 ⌘ (r0�3M)�r2

2r0(r0�2M)2� and � ⌘ 1� M
r0�2M sin2 �. Here we use ↵ and � as spherical

coordinates in the frame where the particle is at the north pole, ↵ = 0. The coordinates ✓ and � are reserved for the
frame where the particle is in the equatorial plane, ✓ = ⇡/2. Note that the only dependence of the singular field on
↵ appears through ⇢ and the only dependence on � appears through �.

B. Spherical harmonic decomposition

We now wish to write the singular field as an expansion in scalar spherical harmonic modes (we use the mode index
m0 for the modes decomposed in the (↵,�) coordinates; later we will use m to denote modes decomposed in the (✓,')
coordinates; in both cases ` is the same since rotations do not mix ` modes)

�S(↵,�) =
X

`m0

�S
`m0Y`m0(↵,�). (1.2)

We do so by integrating against the complex conjugate of the scalar spherical harmonic,

�S
`m0 =

Z 2⇡

0

Z ⇡

0
�S(↵,�)Y ⇤

`m0(↵,�) sin↵ d↵ d�. (1.3)

We can use these to compute the modes in the unrotated (✓, ') frame using the Wigner-D matrix

�S
`m =

X

m0

�S
`m0D`

mm0(⇡,⇡/2,⇡/2) (1.4)

Concentrating first on the m0 = 0 mode, we note that the integration over ↵ only involves odd powers of ⇢, i.e ⇢p for
p an odd integer. These integrals can be done analytically using

Z ⇡

0
(�2 + 1� cos↵)p/2P`(cos↵) sin↵ d↵

=
(�1)

p+1
2 (�2 + 2)

p
2+1

⇥�
1
2

�
p+1
2

⇤2
�
l � p

2

�
p+2

2F1(�l, l + 1;�p
2 ;�

�2

2 )�
2 |�| �p+1

p+ 2
2F1(�l, l + 1; p

2 + 2;� �2

2 )

=
(�1)

p+1
2 (�2 + 2)

p
2+1

⇥�
1
2

�
p+1
2

⇤2
�
l � p

2

�
p+2

lX

n=0

(�1)n�2n(l � n+ 1)2n
2nn!

�p
2 � n+ 1

�
n

� |�| �p+1
lX

n=0

�2n(l � n+ 1)2n
2nn!

�p
2 + 1

�
n+1

. (1.5)

Due to the structure of the singular field, (1.1), the dependence on � in the result has the two forms. The first term
above yields elliptic integrals of the form

Z ⇡

0

✓
2 +

(r0 � 3M)�r2

2r0(r0 � 2M)2�

◆ p
2+1

�n/2d�, (1.6)

where n is an odd integer. Note that the argument of the elliptic integral will depend on �r, r0 and M . The second

term above yields integrands involving �n with n an integer; their integral is a polynomial involving
q

M
r0�2M . We

can therefore compute the m0 = 0 mode exactly and analytically (in terms of elliptic integrals).
If all we wanted was the regularized retarded field (and its first angular derivative, first three radial derivatives)

on the worldline, then we could stop here. This is because, although the m0 = 0 mode is insu�cient to render each
individual `,m mode convergent, the sum over m0 evaluated on the worldline only involves m0 = 0 and so the lack of
convergence in the higher modes is irrelevant.

In order to obtain higher radial derivatives, we would need to start from an approximation to the Detweiler-Whiting
singular field of higher order in ✏. For higher angular derivatives, we additionally need to include higher m0 modes,
since the sum over m0 of the derivatives of the modes depends on higher modes than m0 = 0 (the number of modes
required grows linearly with the number of derivatives). These can be obtained in much the same way as above,
but with one catch. Our particular choice of extension o↵ the worldline means that — in addition to having the
appropriate singular form near the worldline, ↵ = 0 — our approximation to the singular field also has a non-smooth
behaviour far from the worldline, near ↵ = ⇡. This is does not cause any di�culty for the m0 = 0 modes as they don’t
see the non-smoothness. Unfortunately, it does cause problems for the m0 6= 0 modes (this problem also a↵ects the

2

where ⇢2 ⌘ 2r20(r0�2M)�
r0�3M (�2+1�cos↵), �2 ⌘ (r0�3M)�r2

2r0(r0�2M)2� and � ⌘ 1� M
r0�2M sin2 �. Here we use ↵ and � as spherical

coordinates in the frame where the particle is at the north pole, ↵ = 0. The coordinates ✓ and � are reserved for the
frame where the particle is in the equatorial plane, ✓ = ⇡/2. Note that the only dependence of the singular field on
↵ appears through ⇢ and the only dependence on � appears through �.

B. Spherical harmonic decomposition

We now wish to write the singular field as an expansion in scalar spherical harmonic modes (we use the mode index
m0 for the modes decomposed in the (↵,�) coordinates; later we will use m to denote modes decomposed in the (✓,')
coordinates; in both cases ` is the same since rotations do not mix ` modes)

�S(↵,�) =
X

`m0

�S
`m0Y`m0(↵,�). (1.2)

We do so by integrating against the complex conjugate of the scalar spherical harmonic,

�S
`m0 =

Z 2⇡

0

Z ⇡

0
�S(↵,�)Y ⇤

`m0(↵,�) sin↵ d↵ d�. (1.3)

We can use these to compute the modes in the unrotated (✓, ') frame using the Wigner-D matrix

�S
`m =

X

m0

�S
`m0D`

mm0(⇡,⇡/2,⇡/2) (1.4)

Concentrating first on the m0 = 0 mode, we note that the integration over ↵ only involves odd powers of ⇢, i.e ⇢p for
p an odd integer. These integrals can be done analytically using

Z ⇡

0
(�2 + 1� cos↵)p/2P`(cos↵) sin↵ d↵

=
(�1)

p+1
2 (�2 + 2)

p
2+1

⇥�
1
2

�
p+1
2

⇤2
�
l � p

2

�
p+2

2F1(�l, l + 1;�p
2 ;�

�2

2 )�
2 |�| �p+1

p+ 2
2F1(�l, l + 1; p

2 + 2;� �2

2 )

=
(�1)

p+1
2 (�2 + 2)

p
2+1

⇥�
1
2

�
p+1
2

⇤2
�
l � p

2

�
p+2

lX

n=0

(�1)n�2n(l � n+ 1)2n
2nn!

�p
2 � n+ 1

�
n

� |�| �p+1
lX

n=0

�2n(l � n+ 1)2n
2nn!

�p
2 + 1

�
n+1

. (1.5)

Due to the structure of the singular field, (1.1), the dependence on � in the result has the two forms. The first term
above yields elliptic integrals of the form

Z ⇡

0

✓
2 +

(r0 � 3M)�r2

2r0(r0 � 2M)2�

◆ p
2+1

�n/2d�, (1.6)

where n is an odd integer. Note that the argument of the elliptic integral will depend on �r, r0 and M . The second

term above yields integrands involving �n with n an integer; their integral is a polynomial involving
q

M
r0�2M . We

can therefore compute the m0 = 0 mode exactly and analytically (in terms of elliptic integrals).
If all we wanted was the regularized retarded field (and its first angular derivative, first three radial derivatives)

on the worldline, then we could stop here. This is because, although the m0 = 0 mode is insu�cient to render each
individual `,m mode convergent, the sum over m0 evaluated on the worldline only involves m0 = 0 and so the lack of
convergence in the higher modes is irrelevant.

In order to obtain higher radial derivatives, we would need to start from an approximation to the Detweiler-Whiting
singular field of higher order in ✏. For higher angular derivatives, we additionally need to include higher m0 modes,
since the sum over m0 of the derivatives of the modes depends on higher modes than m0 = 0 (the number of modes
required grows linearly with the number of derivatives). These can be obtained in much the same way as above,
but with one catch. Our particular choice of extension o↵ the worldline means that — in addition to having the
appropriate singular form near the worldline, ↵ = 0 — our approximation to the singular field also has a non-smooth
behaviour far from the worldline, near ↵ = ⇡. This is does not cause any di�culty for the m0 = 0 modes as they don’t
see the non-smoothness. Unfortunately, it does cause problems for the m0 6= 0 modes (this problem also a↵ects the

Similar in the gravitational case
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end, we follow previous regularization strategies by in-
troducing a Riemann normal coordinate system in the
vicinity of the worldline, and rewrite (4.1) as a coordin-
ate expansion in terms of these coordinates. Specific-
ally, we assume that the spacetime can be represented in
terms of a spherical coordinate system with polar and azi-
muthal coordinates ↵ and �, radius r and time t. Note
that, although our focus here is on the Schwarzschild
spacetime, the assumption of a spherical coordinate sys-
tem does not necessarily limit us to spherical symmetry;
for example, the method works equally well in the non-
spherically symmetric Kerr spacetime [44].

Now, orienting our coordinate system such that the
worldline is instantaneously at ↵ = 0, we define the
Riemann normal coordinates w

1

= 2 sin ↵
2

cos� and w
2

=
2 sin ↵

2

sin�. Using coordinate expansions of gaā(x, x0

)
and �(x, x

0

) about x = x
0

to linear order in x � x
0

,
we obtain an approximation to (4.1) in terms of the
(t, r, w

1

, w
2

) Riemann normal coordinate system. Struc-
turally, our coordinate expansion has the form

h̄
(S)

ab =
1

✏

c
(1)

ab

⇢
+ ✏0

hc
(2)

ab �r

⇢
+

c
(3)

ab �r3

⇢3

i

+O(✏), (4.2)

where ⇢ is the leading-order term in the coordinate ex-

pansion of s̄ and the coe�cients c(1)ab , c
(2)

ab and c
(3)

ab do not
depend on �r or ↵ (and hence w

1

and w
2

)1. The coef-
ficients are also independent of t since we have chosen
�t = 0, i.e., x and x

0

are points on the same time
slice. There is still a potential time dependence, how-
ever, through the dependence of the coe�cients on the
worldline and four-velocity.

In the next subsection, we will seek a decomposi-
tion into spherical-harmonic modes. We therefore apply
the (approximate) Jacobian from (w

1

, w
2

) coordinates to
(↵,�) coordinates. In doing so, we pull out a factor of
sin↵ from the Jacobian when computing ht� , hr� and
h↵� , and a factor of sin2 ↵ when computing h�� . The
reason for doing so will become clear during the mode de-
composition, and is related to the fact that the Riemann
normal coordinate system is regular on the worldline, but
the (↵,�) coordinate system is not.

Evaluating Eq. (4.1) for our particular case of a circular
orbit in Schwarzschild spacetime, we arrive at our desired
coordinate expansion of the Detweiler-Whiting singular
metric perturbation. With Riemann normal components

1 This form is valid for the case of circular orbits in Schwarzschild
spacetime, where any quadratic dependence on w

1

and w
2

can
be replaced with a term involving ⇢2 and �r2. The structure
is slightly more complicated in more general cases where odd
powers of w

1

and w
2

can appear, but nonetheless the following
analysis remains qualitatively unchanged.

given by

h̄tw
1

= �1

⇢

h4r2
0

⌦'(r0 � 2M)

r
0

� 3M
+

2�r r
0

⌦'

r
0

� 3M
⇥

r2
0

� 3Mr
0

+ 2M2 � 2M2 sin2 �

(r
0

� 2M)(1� M
r
0

�2M sin2 �)

i

, (4.3a)

h̄rw
1

=
4Mr

0

sin↵ cos�

⇢(r
0

� 3M)
, (4.3b)

h̄w
1

w
1

=
cos2 �

⇢

h 4Mr2
0

r
0

� 3M
+

2�rMr
0

r
0

� 3M
⇥

3r
0

� 7M � 2M sin2 �

(r
0

� 2M)(1� M
r
0

�2M sin2 �)

i

. (4.3c)

our approximation to the Detweiler-Whiting singular
metric is then given by

h̄tt =
1

⇢

h4(r
0

� 2M)2

r
0

(r
0

� 3M)
� 2�r

r2
0

(r
0

� 3M)
⇥

r2
0

� 7Mr
0

+ 10M2 � 2M(r
0

� 4M) sin2 �

1� M
r
0

�2M sin2 �

i

(4.4a)

h̄tr = �4r
0

⌦'(r0 � 2M) sin↵ cos�

⇢(r
0

� 3M)
(4.4b)

h̄t↵ = h̄tw
1

cos�, (4.4c)

h̄t� = �h̄tw
1

sin↵ sin�, (4.4d)

h̄rr = 0, (4.4e)

h̄r↵ = h̄rw
1

cos�, (4.4f)

h̄r� = �h̄rw
1

sin↵ sin�, (4.4g)

h̄↵↵ = h̄w
1

w
1

cos2 �, (4.4h)

h̄↵� = �h̄w
1

w
1

sin↵ sin� cos�, (4.4i)

h̄�� = h̄w
1

w
1

sin2 ↵ sin2 �. (4.4j)

This approximation includes all contributions at order
✏�1 and ✏0, with the exception of terms proportional to
�r3/⇢3, which we neglect as their mode decomposition
yields only terms proportional to �r2 and higher.

2. Mode decomposition

We now proceed with the decomposition of our co-
ordinate expansion into tensor spherical harmonic modes.
For this, we must evaluate the integrals of the singular
field against the tensor spherical harmonics,

h̄
(i)P
`m =

r

µ a
(i)
`

Z

2⇡

0

Z ⇡

0

h̄⌧⌘
⌧µ⌘⌫Y (i)`m

µ⌫
⇤ sin↵ d↵ d�.

(4.5)
For the circular orbit case we are considering here, the
explicit form for the integrand for each i = 1, . . . , 10 field
is given in Table II.
The mode decomposition works much the same as with

the scalar field case described in [28]. There are, however,
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diag(1, sin2 ✓) on the two-sphere (i.e. ✏✓' = sin ✓, ✏'✓ =
� sin ✓, ✏✓✓ = 0 = ✏''). Explicitly, the components of
the vector harmonics are

Z`m
✓ = [`(`+ 1)]�1/2@✓Y

`m,

X`m
✓ = �[`(`+ 1)]�1/2 1

sin ✓
@'Y

`m,

Z`m
' = [`(`+ 1)]�1/2@'Y

`m,

X`m
' = [`(`+ 1)]�1/2 sin ✓ @✓Y

`m. (A15)

The vector harmonics satisfy the orthonormality rela-
tions

Z

2⇡

0

Z ⇡

0

X`m
A (✓,')XA⇤

`0m0(✓,') d⌦ = �``0 �mm0 , (A16a)

Z

2⇡

0

Z ⇡

0

Z`m
A (✓,')ZA⇤

`0m0(✓,') d⌦ = �``0 �mm0 , (A16b)

Z

2⇡

0

Z ⇡

0

X`m
A (✓,')ZA⇤

`0m0(✓,') d⌦ = 0. (A16c)

They also satisfy

X`m⇤
A (✓,') = (�1)mX`,�m

A (✓,'), (A17a)

Z`m⇤
A (✓,') = (�1)mZ`,�m

A (✓,'). (A17b)

These definitions are consistent with [52] and with [53]
(apart from the inclusion of the prefactor [`(` + 1)]�1/2

which ensures orthonormality) and relate to those of [54]
through the conversion Z`m

A ! [`(`+ 1)]1/2Y `m
A , X`m

A !
[`(`+ 1)]1/2X`m

A .

3. Tensor spherical harmonics

The tensor spherical harmonics again fall into two cat-
egories, those of even parity (`+m even) and those of odd
parity (`+m odd). The even-parity tensor harmonics are
defined by

Z`m
AB =



2
(`� 2)!

(`+ 2)!

�

1

2

⇥

DADB +
1

2
`(`+ 1)⌦AB

⇤

Y `m,

(A18)
and the odd-parity harmonics are defined by

X`m
AB = �



2
(`� 2)!

(`+ 2)!

�

1

2

✏
(A

CDB)

DCY
`m. (A19)

Explicitly, the components of the tensor harmonics are

Z`m
✓✓ =

"

2
(`� 2)!

(`+ 2)!

#

1

2

h

@✓✓ +
1

2

`(`+ 1)
i

Y `m, (A20a)

Z`m
✓' =

"

2
(`� 2)!

(`+ 2)!

#

1

2

h

@✓' � cot ✓ @'
i

Y `m, (A20b)

Z`m
'' =

"

2
(`� 2)!

(`+ 2)!

#

1

2

h

@'' + sin ✓ cos ✓ @✓

+ 1

2

`(`+ 1) sin2 ✓
i

Y `m, (A20c)

X`m
✓✓ = �

"

2
(`� 2)!

(`+ 2)!

#

1

2

1

sin ✓

h

@✓' � cot ✓ @'
i

Y `m, (A20d)

X`m
✓' = �

"

2
(`� 2)!

(`+ 2)!

#

1

2

1

2 sin ✓

h

@'' � sin2 ✓ @✓✓,

+sin ✓ cos ✓ @✓
i

Y `m (A20e)

X`m
'' =

"

2
(`� 2)!

(`+ 2)!

#

1

2

sin ✓
h

@✓' � cot ✓ @'
i

@✓Y
`m. (A20f)

The tensor harmonics satisfy the orthonormality rela-
tions

Z

2⇡

0

Z ⇡

0

X`m
AB(✓,')X

AB⇤
`0m0 (✓,') d⌦ = �``0 �mm0 , (A21a)

Z

2⇡

0

Z ⇡

0

Z`m
AB(✓,')Z

AB⇤
`0m0 (✓,') d⌦ = �``0 �mm0 , (A21b)

Z

2⇡

0

Z ⇡

0

X`m
AB(✓,')Z

AB⇤
`0m0 (✓,') d⌦ = 0, (A21c)

and the identity

⌦ABZ`m
AB = 0 = ⌦ABX`m

AB . (A22)

They also satisfy

X`m⇤
AB (✓,') = (�1)mX`,�m

AB (✓,'), (A23a)

Z`m⇤
AB (✓,') = (�1)mZ`,�m

AB (✓,'). (A23b)

These definitions are consistent with Thorne [52] and re-
late to those of [53] through an orthonormality factor,

Z`m
AB !

h

2 (`�2)!

(`+2)!

i

1/2

Y `m
AB , X`m

AB !
h

2 (`�2)!

(`+2)!

i

1/2

X`m
AB .

4. Rotations

Under a rotation of the coordinate system which is
represented by the Euler angles ↵,�, �, the spherical har-
monics components transform according to

f`m(✓,') =
X̀

m0
=�`

D`
mm0(↵,�, �)f`m0(✓0,'0), (A24)

where D`
mm0(↵,�, �) is the Wigner-D matrix [55]. Here,

we use the convention that the Euler angles correspond
to a z � y � z counterclockwise rotation and our con-
vention2 for D`

mm0(↵,�, �) is consistent with Rose [56].
Using these conventions, the Wigner-D matrix satisfies

D`
m

1

m
2

(↵,�, �) = e�im
1

↵�im
2

�D`
m

1

m
2

(0,�, 0). (A25)

2 This convention is di↵erent from that of Mathematica [51] and
Wigner [55]. Our D`

mm0 (↵,�, �) is related to theirs by a change
in the signs of m and m0 [56].
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The vector and tensor harmonics also transform in a sim-
ilar way [57], i.e.,

X`m
A (✓,') =

@xA0

@xA

X̀

m0
=�`

D`
mm0(↵,�, �)X`m0

A0 (✓0,'0), (A26a)

Z`m
A (✓,') =

@xA0

@xA

X̀

m0
=�`

D`
mm0(↵,�, �)Z`m0

A0 (✓0,'0), (A26b)

X`m
AB(✓,') =

@xA0

@xA

@xB0

@xB

X̀

m0
=�`

D`
mm0(↵,�, �)X`m0

A0B0(✓0,'0), (A26c)

Z`m
AB(✓,') =

@xA0

@xA

@xB0

@xB

X̀

m0
=�`

D`
mm0(↵,�, �)Z`m0

A0B0(✓0,'0), (A26d)

which is equivalent to stating that the vector and tensor
harmonic components of a tensor transform according to
Eq. (A24). Finally, we note that the Wigner-D matrix
relates to the spin-weighted spherical harmonics:

D`
ms(↵,�, �) = (�1)s

r

4⇡

2`+ 1
�sY

⇤
`m(�,↵)e�is� , (A27)

which for the spin-0 case gives a relation to the scalar
harmonics,

D`
m0

(↵,�, 0) =

r

4⇡

2`+ 1
Y ⇤
`m(�,↵). (A28)

5. Tensor harmonic basis in Schwarzschild
spacetime

Barack and Lousto [36] use the above bases of scalar,
vector and tensor harmonics to construct a basis of har-
monics for the components of a symmetric rank-2 tensor
tµ⌫ defined on a Schwarzschild background spacetime.
This basis was later modified slightly by Barack and Sago
[30] to improve the behaviour of some components near
the horizon. In particular, they choose a basis of 10 fields
in t� r space defined by

t
(1)

`m =

Z

2⇡

0

Z ⇡

0

r (ttt + f2trr)Y
⇤
`m d⌦, (A29a)

t
(2)

`m =

Z

2⇡

0

Z ⇡

0

2 rf ttrY
⇤
`m d⌦, (A29b)

t
(3)

`m =

Z

2⇡

0

Z ⇡

0

rf (ttt � f2trr)Y
⇤
`m d⌦, (A29c)

t
(4)

`m =

Z

2⇡

0

Z ⇡

0

2
⇥

`(`+ 1)
⇤

1/2
ttAZ

A⇤
`m d⌦, (A29d)

t
(5)

`m =

Z

2⇡

0

Z ⇡

0

2
⇥

`(`+ 1)
⇤

1/2
f trAZ

A⇤
`m d⌦, (A29e)

t
(6)

`m =

Z

2⇡

0

Z ⇡

0

1

r
tAB⌦

ABY ⇤
`m d⌦,

t
(7)

`m =

Z

2⇡

0

Z ⇡

0

1

r



2
(`� 2)!

(`+ 2)!

�

1/2

⇥

tAB

⇣

ZAB⇤
`m � 1

2
⌦AB⌦CDZCD⇤

`m

⌘

d⌦,

(A29f)

t
(8)

`m = �
Z

2⇡

0

Z ⇡

0

2
⇥

`(`+ 1)
⇤

1/2
ttAX

A⇤
`m d⌦, (A29g)

t
(9)

`m = �
Z

2⇡

0

Z ⇡

0

2
⇥

`(`+ 1)
⇤

1/2
trAX

A⇤
`m d⌦, (A29h)

t
(10)

`m =

Z

2⇡

0

Z ⇡

0

1

r



2
(`� 2)!

(`+ 2)!

�

1/2

⇥

tAB

⇣

XAB⇤
`m � 1

2
⌦AB⌦CDXCD⇤

`m

⌘

d⌦,

(A29i)

where f ⌘ (1 � 2M/r). The harmonics i = 1, . . . , 7 are
of even parity, while the harmonics i = 8, 9, 10 are of odd
parity.
Barack and Sago represent this basis in terms of a set

of 10 tensors defined by

Y (1)

µ⌫ = 1p
2

(�tµ�
t
⌫ + f�2�rµ�

r
⌫)Y

`m, (A30)

Y (2)

µ⌫ = 1

f
p
2

(�tµ�
r
⌫ + �rµ�

t
⌫)Y

`m, (A31)

Y (3)

µ⌫ = fp
2

(�tµ�
t
⌫ � f�2�rµ�

r
⌫)Y

`m, (A32)

Y (4)

µ⌫ = rp
2

(�tµZ
`m
⌫ + Z`m

µ �t⌫), (A33)

Y (5)

µ⌫ = r
f
p
2

(�rµZ
`m
⌫ + Z`m

µ �r⌫), (A34)

Y (6)

µ⌫ = r2p
2

⌦AB�
A
µ �

B
⌫ Y `m, (A35)

Y (7)

µ⌫ = r2(Z`m
µ⌫ � 1

2

ZA
A⌦µ⌫), (A36)

Y (8)

µ⌫ = � rp
2

(�tµX
`m
⌫ +X`m

µ �t⌫), (A37)

Y (9)

µ⌫ = � r
f
p
2

(�rµX
`m
⌫ +X`m

µ �r⌫), (A38)

Y (10)

µ⌫ = r2(X`m
µ⌫ � 1

2

XA
A⌦µ⌫). (A39)

With the exception of i = 3, this basis is an orthonormal
set in the sense that

Z

2⇡

0

Z ⇡

0

⌘⌧µ⌘⌫Y (i)`m
µ⌫ Y (j)`0m0⇤

⌧ d⌦ = �ij�``0 �mm0 ,

(A40)
where ⌘⌧ ⌘ diag(1, f2, r�2, r�2 sin�2 ✓). For i = 3, the

set is also orthogonal, but Y (3)

µ⌫ has a norm of f2.
Finally, we note that Barack and Sago factor the coef-

ficients

a
(i)
` =

1p
2

8

<

:

1, i = 1, 2, 3, 6,
(`(`+ 1))�1/2, i = 4, 5, 8, 9,
((`� 1)`(`+ 1)(`+ 2))�1/2, i = 7, 10,

(A41)

out from the tensor harmonic fields, h̄(i), in order to
make some of their expressions for, e.g., the field equa-



Exact, analytic mode decomposition

2

where ⇢2 ⌘ 2r20(r0�2M)�
r0�3M (�2+1�cos↵), �2 ⌘ (r0�3M)�r2

2r0(r0�2M)2� and � ⌘ 1� M
r0�2M sin2 �. Here we use ↵ and � as spherical

coordinates in the frame where the particle is at the north pole, ↵ = 0. The coordinates ✓ and � are reserved for the
frame where the particle is in the equatorial plane, ✓ = ⇡/2. Note that the only dependence of the singular field on
↵ appears through ⇢ and the only dependence on � appears through �.

B. Spherical harmonic decomposition

We now wish to write the singular field as an expansion in scalar spherical harmonic modes (we use the mode index
m0 for the modes decomposed in the (↵,�) coordinates; later we will use m to denote modes decomposed in the (✓,')
coordinates; in both cases ` is the same since rotations do not mix ` modes)

�S(↵,�) =
X

`m0

�S
`m0Y`m0(↵,�). (1.2)

We do so by integrating against the complex conjugate of the scalar spherical harmonic,

�S
`m0 =

Z 2⇡

0

Z ⇡

0
�S(↵,�)Y ⇤

`m0(↵,�) sin↵ d↵ d�. (1.3)

We can use these to compute the modes in the unrotated (✓, ') frame using the Wigner-D matrix

�S
`m =

X

m0

�S
`m0D`

mm0(⇡,⇡/2,⇡/2) (1.4)

Concentrating first on the m0 = 0 mode, we note that the integration over ↵ only involves odd powers of ⇢, i.e ⇢p for
p an odd integer. These integrals can be done analytically using
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� |�| �p+1
lX

n=0

�2n(l � n+ 1)2n
2nn!

�p
2 + 1

�
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. (1.5)

Due to the structure of the singular field, (1.1), the dependence on � in the result has the two forms. The first term
above yields elliptic integrals of the form

Z ⇡

0

✓
2 +

(r0 � 3M)�r2

2r0(r0 � 2M)2�

◆ p
2+1

�n/2d�, (1.6)

where n is an odd integer. Note that the argument of the elliptic integral will depend on �r, r0 and M . The second

term above yields integrands involving �n with n an integer; their integral is a polynomial involving
q

M
r0�2M . We

can therefore compute the m0 = 0 mode exactly and analytically (in terms of elliptic integrals).
If all we wanted was the regularized retarded field (and its first angular derivative, first three radial derivatives)

on the worldline, then we could stop here. This is because, although the m0 = 0 mode is insu�cient to render each
individual `,m mode convergent, the sum over m0 evaluated on the worldline only involves m0 = 0 and so the lack of
convergence in the higher modes is irrelevant.

In order to obtain higher radial derivatives, we would need to start from an approximation to the Detweiler-Whiting
singular field of higher order in ✏. For higher angular derivatives, we additionally need to include higher m0 modes,
since the sum over m0 of the derivatives of the modes depends on higher modes than m0 = 0 (the number of modes
required grows linearly with the number of derivatives). These can be obtained in much the same way as above,
but with one catch. Our particular choice of extension o↵ the worldline means that — in addition to having the
appropriate singular form near the worldline, ↵ = 0 — our approximation to the singular field also has a non-smooth
behaviour far from the worldline, near ↵ = ⇡. This is does not cause any di�culty for the m0 = 0 modes as they don’t
see the non-smoothness. Unfortunately, it does cause problems for the m0 6= 0 modes (this problem also a↵ects the

Scalar, m=0 mode decompositions are given analytically in 
terms of (finite) hypergeometric series in 𝛿~∆r.

Integrate by parts - scalar, m!=0 mode decompositions can be rewritten 
in terms of m=0 decompositions plus a term proportional to |∆r|.

Tensor mode decompositions can be written in terms of combinations 
of scalar mode compositions.

Integrations over β are complete elliptic integrals of third kind.



Mode coupling: scalar toy model
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Mode coupling: metric perturbation
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Mode coupling: metric perturbation
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Mode coupling: 𝛿2R[hR1,hR1]
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Towards second order self-force
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NEXT CAPRA!


