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What we can do:

generic inspirals
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Comparisons to self-force

• Compare to geodesic 
and SF invariant 
quantities


• Determine regime of 
validity of SF


• Calibrate analytic 
models (EOB, etc)
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q = 7, �1 = 0.8, �2 = 0,

N� ⇡ 55, Nr ⇡ 41



What do we get from NR?
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Mapping to geodesic 
motion
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Mapping to geodesic 
motion
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Mapping to geodesic 
motion
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• Invariant measures
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• Dissipation: fit out

(e, ◆)

(p, e, ◆) $ (E , Lz, Q)

⌦a ! ⌦a + �⌦a

p ! ⌦� (e, ◆)

⌦r

⌦�

⌦✓

⌦�



Fitting out inspiral

• Fundamental 
frequencies averaged 
quantities
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Fitting out inspiral

• Fundamental 
frequencies averaged 
quantities
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⌦

• Cannot remove 
dissipation


• Need to fit out or orbit 
average



Periastron precession
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FIG. 1. Periastron advance extracted from numerical simulations.
Upper panel: The dashed curves show KNR(Wj )/KSch(Wj ) as com-
puted from Eqs. (3) and (4) using fitting intervals with two different
widths v . The solid lines show polynomial fits to KNR/KSch. Lower
panel: Residuals of the polynomial fits.
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FIG. 2. Relative uncertainty DK/K in the numerical-relativity perias-
tron advance as a function of the eccentricity e of the configuration.
Shown are data for four black-hole binaries with different mass ratios
q = m1/m2, one of them with a non-zero spin. Each symbol repre-
sents a separate numerical binary black hole evolution. The results
shown here were computed at the orbital frequency mWj = 0.033.

simple fitting formula (2) used. Early in the inspiral, these
oscillations are typically of order 0.1� 0.2%, and they grow
during the inspiral. The amplitude of these oscillations is fur-
thermore strongly dependent on the width v of the fitting win-
dow. This dependence arises because a longer fitting interval
includes a larger number of the eccentricity-induced oscilla-
tions in W(t) that the fitting function (2) is designed to capture,
and therefore reduces the uncertainty of the fit.

A second important effect enters through the magnitude of
the eccentricity. The oscillatory term in Eq. (2) will be propor-
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FIG. 3. Effect of the choice of width v on the measured periastron
advance. Shown are data for the three reference frequencies We/m/l
and for two exemplary runs: (q,c1,c2) = (1,0,0) and (q,c1,c2) =
(8,0.5,0). The symbols denote KNR/KSch as measured with width
v indicated on the x-axis. The dotted lines denote fits indicating the
extrapolation to zero width, v ! 0. The number next to each dotted
line indicates the fractional change in KNR/KSch between v = 1.2
and v ! 0. For ease of plotting, the data for q = 8 and mWj = 0.036
has been shifted up by 0.1.

tional to the eccentricity of the orbit. With decreasing eccen-
tricity, this oscillatory term will be increasingly hard to isolate
and Wr will be increasingly difficult to measure. This effect
is illustrated in Fig. 2 which provides a survey of NR sim-
ulations at different eccentricities. An eccentricity e ⇠ 0.01
typically allows to measure K with a relative accuracy of or-
der 0.1%. For smaller eccentricities, the uncertainty in KNR
increases roughly inversely proportionally to e. For larger ec-
centricities, eventually the eccentricity-dependent corrections
to the periastron advance will become noticeable; the leading
relative correction is proportional to e2, and hence still negli-
gible for e ⇠ 0.01. Figure 2 shows data obtained at the orbital
frequency mWj = 0.033. As one moves closer to the merger,
the uncertainty DK increases.

A third systematic effect arises from the choice of the width
v of the fitting interval. Larger v systematically underesti-
mate KNR because the average radial frequency over the fitting
interval is biased towards larger values, as already visible in
Fig. 1. Figure 3 demonstrates this drift more clearly. As can be
seen, KNR drifts by an amount of order 0.1% to 1%; the drift
is generally smaller at large separations (where the inspiral
motion is very “small”), and more pronounced at small sep-
arations. This systematic error also gets smaller as the mass
ratio of the binary increases (more unequal masses).

C. Refined procedure

The three effects described in Sec. II B depend strongly on
the eccentricity e of the run being analyzed, on the width v
of the fitting interval, and on the orbital frequency Wj un-
der consideration for each binary configuration. All three

Le Tiec et al. (2013)
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Periastron precession

8

���� ���� ���� ��������

����

����

����

����

���

	

Analytic

Fit

q = 7, �1 = 0.8, �2 = 0, ◆ = 40�
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Resonant orbits

• Resonances: secular 
accumulation of SF


• Resonant kicks (Hirata, 
van de Meent)


• Large corrections to 
inspiral (Flanagan & 
Hinderer 2012)
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Hinderer 2012)
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Flanagan and Hinderer (2012)



Resonant orbits
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Resonant orbits
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Resonant orbits
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Self-torque
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• Geodetic precession of 
test spin


• Compare to orbital 
motion


• Gauge invt quantity

~�

d�̂

dt
= ~!p ⇥ �̂



Spin evolution
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Spin evolution
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q = 6
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Self-torque comparison
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Self-torque comparison
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Future work

• Higher mass ratios


• New geometric invariants


• Compare to eccentric SF


• Better spin measurement?


• Dissipative SF
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