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Unbound orbits: why they are interesting

o Give access to new (pseudo) gauge-invariant quantities that can
serve as strong-field benchmarks:
o IBCO frequency shift
o scattering angles for hyperbolic-like encounters
o ...
o Relate ADM properties of the binary to SF quantities, already at
first order, by exploiting the fact that the two bodies are infinitely
separated

@ Important for the overspinning problem, where “dangerous” orbits
come from infinity

o High-energy scattering of black holes as a model for ultra-relativistic
collisions of point-particles



Numerical framework and system considered

o We specialise to marginally bound orbits (E = 1) in Schwarzschild,
where the linearised Einstein equations are fully separable in the
time-domain

@ We evolve the metric perturbation in Lorenz gauge, on a double null
grid (Barack and Sago 2010)

Figure 1: From Barack and Sago, Phys. Rev. D, vol. 81, p. 084021, Apr
2010



Lorenz gauge in time-domain

Lorenz gauge in time-domain

@ Can handle any type of orbit

o Framework has been tested thoroughly

o Computationally expensive, slow even at moderate resolutions
@ In Kerr must resort to 2+1 evolution: even more expensive!

o Within Lorenz: Parallelisation

o Teukolsky in time-domain?



Marginally bound orbits |

o Three different orbits sharing the same E, L in the geodesic
approximation:
@ IBCO (innermost bound circular orbit) at r = 4M
@ outbound: starting from the IBCO and going out to infinity
© inbound: starting from infinity and asymptoting to the IBCO



Marginally bound orbits Il

@ Impose conditions at infinity and at the whirl R = Ry + 0R

7(r — 00) =0,
H(R) =0,

o Relate energy/angular momentum at the whirl to the ones at infinity
through integrals of the SF

Ro F
SE(Ry) — 6 E(c0) = —/ Lidr _ AE,
o MOT
Ro F, ar

Closed system of equations



Constraint equations

By imposing the circularity conditions and requiring that the small mass
is at rest at infinity one gets

0E(00) =0,
SR = —8MAE — 3op2 T ) (RO)
o

5L(c0) = 8MAE — AL.



Conservative shift to the IBCO frequency

@ The frequency of the IBCO (at fixed energy at infinity) in an
asymptotically flat gauge is shifted by the conservative self force

M
0% =02 (1 —n+6AE + 167FT(4M)) ,

where the 7 term “flattens out” the Lorenz gauge monopole.

@ Inbound and outbound orbits are time-reversed versions of each
other — use both to compute the conservative self-force along one
of the two:

t (F:et m( ) - Fﬁet,out (T))
Fcons( ) - 9 .



Evolution of low modes

In Lorenz gauge the modes £ =0 and £ = 1, m = 1 do not evolve stably:
linear-in-time gauge modes (homogeneous, regular solutions of the field
equations) contaminate the data.

Possible strategies
@ Correct initial conditions

Q Generalised Lorenz gauge: V®h,s = Hg, with Hg — 0 when
t>M

© Numerical filtering
Q ..



Evolution of low modes: our implementation

@ outbound orbit: use the (analytical) circular solution to construct

initial conditions — evolution is stable!

@ inbound orbit: design a suitable gauge mode with the characteristics
observed in the evolution (constant trace, linear-in-t...) and subtract
it from the numerical data (Dolan and Barack, 2013)

Numerical filtering for both orbits



Numerical filtering: discussion

o Easy to implement, the gauge modes can be subtracted in the
post-processing phase

@ Ad hoc procedure, needs to be tailored to the specific type of orbit
that is being evolved

o Implies loss of accuracy!
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How the SF looks like
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Computation of AE

< F
AE=— [ “ar
—o M
Formally an integral over in infinite domain, in practice
o Neglect the contribution from the region 4M <r < (4 +¢)M
(e ~107)
o Fit the data in the far field region 100M < r < 130M to a
power-law model and integrate that analytically

@ Numerically integrate over the remaining domain.

Current limitations

o Considerable noise coming from ¢ 2 10 in the strong field region

o Evolution is expensive! We run over a rather limited domain
(~ 130M) and this implies the fit in the far-field region is not
extremely accurate



SF and the first law

@ The conservative IBCO shift at fixed energy can be computed from
the shift in the binding energy at fixed

zi=((1+n)MQ)*?

and it reads

1
OUE) = Q= Qo = — o (0 +30E]5m1/4)

o Using the first law of binary black hole mechanics 6 E|,—/4 can be
computed from the redshift z and its first derivative

o Following Akcay et al. (2012) one can compute z(x) for arbitrary
values of z (relying on knowledge of h,,, along circular orbits)

Direct comparison of SF-calculation along unbound orbits and first-law!



@ Result obtained using the first law
n
0Q(FE) = 0.0692008...—
(E) -z
o Result obtained using our time-domain code

SQUE) = 0.069(2)%

Results are consistent but at the moment we have limited accuracy



Calibration of EOB: an example

@ The shift in the IBCO frequency can be related to the derivative of
the function a(u = 1/r), which features in the EOB effective metric

ds2;p = —A(r;v)dt® + B(ryv)dr® +r* (d§” + sin 6° dg?) ,

where v = uM/(pu+ M)2.

o For the innermost stable circular orbit, z:(u) can be related to A

—0,A(u)

1/3
2 ) Damour 2010

z(u) =u (
o For EMRIs v ~n <« 1
A(u;v) =1 —2u + a(u)v + O(v?)

and compare with SF.



Calibration of the a potential: results

Combine EOB and SF
Q% = Q2 (14 v (0,a(1/4) —2))

M
0% =02 (1 —1n+6AE + IGZFT(ZLM))

Our result

Bua(1/4) = 2 (1 + 7%)0) =3.10(8).

Previous result

Oua(1/4) = 3.107206... (Akcay et al.)



Conclusions

o We presented a first computation of the IBCO shift via a full GSF
calculation along unbound orbits

@ The result is consistent with the one obtained by looking at circular
orbits and applying the first law of binary black hole mechanics

@ Our framework represents a totally independent tool to calibrate
EOB and could be used to study hyperbolic-like orbits



