
Chad Galley, California Institute of Technology

Fast and accurate evaluation of black hole Green’s 
functions using surrogate models

with Barry Wardell (University College Dublin)

Capra 19, Meudon, Paris, June 29, 2016



Green’s functions

=)⇤
x

G(x, x0) =
�

4(x� x

0)p
�g(x)

�(x) =

Z
d

4
x

0
p

�g(x0)G(x, x0)J(x0)



Green’s functions

=)⇤
x

G(x, x0) =
�

4(x� x

0)p
�g(x)

�(x) =

Z
d

4
x

0
p

�g(x0)G(x, x0)J(x0)

What are the advantages of using Green’s functions?
• Compute only once
• Nearly all physical quantities of interest are calculated via 

convolution integrals
• Arbitrary motion for self-force
• Geometric interpretation (see also J. Thornburg’s talk)

• Higher-order self-force
• Self-consistent (higher-order) self-forced evolution
• Self-consistent inspiral waveforms
• Arguably straightforward to implement once known



What are the disadvantages of using Green’s functions?
• Computationally expensive
• Large data sets (G is a bitensor!)
• Gravitational perturbations: Instabilities? Metric reconstruction?



What are the disadvantages of using Green’s functions?
• Computationally expensive
• Large data sets (G is a bitensor!)
• Gravitational perturbations: Instabilities? Metric reconstruction?

“Direct integration of the MiSaTaQuWa equation: 

    “Possible in principle, not efficient in practice.”   
      — Mino (2004)” 

— Isoyama (2016)



What are the disadvantages of using Green’s functions?
• Computationally expensive
• Large data sets (G is a bitensor!)
• Gravitational perturbations: Instabilities? Metric reconstruction?

“Direct integration of the MiSaTaQuWa equation: 

    “Possible in principle, not efficient in practice.”   
      — Mino (2004)” 

— Isoyama (2016)

Goal: 

Find a way for Green’s functions to be efficient and accurate to use 
for practical self-force and related computations.



Numerical Green’s functions
⇤

x

G(x, x0) =
�

4(x� x

0)p
�g(x)

�! Narrow Gaussian  
Zenginoglu & CRG (12)



Numerical Green’s functions
⇤

x

G(x, x0) =
�

4(x� x

0)p
�g(x)

�! Narrow Gaussian  
Zenginoglu & CRG (12)

Solve a (symmetry-reduced) homogeneous wave equation with 
narrow Gaussian in initial data  
Wardell, CRG et al (14)



Numerical Green’s functions
⇤

x

G(x, x0) =
�

4(x� x

0)p
�g(x)

�! Narrow Gaussian  
Zenginoglu & CRG (12)

Solve a (symmetry-reduced) homogeneous wave equation with 
narrow Gaussian in initial data  
Wardell, CRG et al (14)

Numerical Green’s functions are globally valid approximations but 
utilizing analytic approximations at early and late times is extremely 
helpful 
- Quasi-local expansions Ottewill & Wardell (08); Wardell’s thesis  
- Pade approximants Casals et al (09)  
- Method of matched expansions Anderson & Wiseman (05); Casals et al (13)



Numerical Green’s functions
⇤

x

G(x, x0) =
�

4(x� x

0)p
�g(x)

�! Narrow Gaussian  
Zenginoglu & CRG (12)

Solve a (symmetry-reduced) homogeneous wave equation with 
narrow Gaussian in initial data  
Wardell, CRG et al (14)

Numerical Green’s functions are globally valid approximations but 
utilizing analytic approximations at early and late times is extremely 
helpful 
- Quasi-local expansions Ottewill & Wardell (08); Wardell’s thesis  
- Pade approximants Casals et al (09)  
- Method of matched expansions Anderson & Wiseman (05); Casals et al (13)

When these analytical approximations (e.g., in Schwarzschild) are 
available we use numerical Green’s functions for intermediate times



-5 0 5 10

-6

-4

-2

0

2

4

6

xêM

yêM

Eccentric orbits along the separatrix

P
(t0 = 0, r0⇤)

(t, r⇤(t), �(t))

Wardell, CRG et al (14)



The goal
To quickly predict accurate solutions to the Green’s function wave 
equation that are otherwise too slow and too large for practical use



The goal
To quickly predict accurate solutions to the Green’s function wave 
equation that are otherwise too slow and too large for practical use

The method
Use reduced-order modeling techniques to reduce large sets of pre-
computed Green’s function data to its essential components



The goal
To quickly predict accurate solutions to the Green’s function wave 
equation that are otherwise too slow and too large for practical use

The method
Use reduced-order modeling techniques to reduce large sets of pre-
computed Green’s function data to its essential components

• Reduced basis (compression in source & field points)  

• Empirical interpolation (compression in time) 

• Fits to predict new Green’s function values
Field, CRG et al (14)



The goal
To quickly predict accurate solutions to the Green’s function wave 
equation that are otherwise too slow and too large for practical use

The result
An accurate surrogate model to generate new Green’s function data 
on demand

The method
Use reduced-order modeling techniques to reduce large sets of pre-
computed Green’s function data to its essential components

• Reduced basis (compression in source & field points)  

• Empirical interpolation (compression in time) 

• Fits to predict new Green’s function values
Field, CRG et al (14)



Surrogate models for gravitational waveforms have been used 
successfully for:

• Non-spinning Effective One-Body (EOBNRv2) 
Field, CRG, et al PRX (14)

• Spin-aligned Effective One-Body (SEOBNRv2) 
Purrer (15)

• Non-spinning Numerical Relativity (SpEC) 
Blackman, Field, CRG et al PRL (15)

• 4d precession, Numerical Relativity (SpEC) 
(in prep)



Surrogate models for gravitational waveforms have been used 
successfully for:

• Non-spinning Effective One-Body (EOBNRv2) 
Field, CRG, et al PRX (14)

• Spin-aligned Effective One-Body (SEOBNRv2) 
Purrer (15)

• Non-spinning Numerical Relativity (SpEC) 
Blackman, Field, CRG et al PRL (15)

• 4d precession, Numerical Relativity (SpEC) 
(in prep)

However, the steps for building a Green’s function surrogate are 
necessarily a little different than for waveforms

• Provides one with dynamics, field content, and waveforms

• Source and field points are time-dependent for worldline 
convolutions



Surrogate building: Initial stuff
- Coordinates: (t, r⇤, ✓,�)

see Wardell, CRG et al (14)



Surrogate building: Initial stuff

- Mode decomposition means building a surrogate for each mode

G(x

↵
, x

0↵
) =

1

rr

0

1X

`=0

(2`+ 1)P`(cos ✓)G`(t� t

0
; r⇤, r

0
⇤)

- Coordinates: (t, r⇤, ✓,�)

see Wardell, CRG et al (14)



Surrogate building: Initial stuff

- Mode decomposition means building a surrogate for each mode

G(x

↵
, x

0↵
) =

1

rr

0

1X

`=0

(2`+ 1)P`(cos ✓)G`(t� t

0
; r⇤, r

0
⇤)

- Coordinates: (t, r⇤, ✓,�)

- Treat radial coordinates of source 
and field points as “parameters” 
for the model

~� = (r⇤, r
0
⇤)

see Wardell, CRG et al (14)



Surrogate building: Initial stuff

- Mode decomposition means building a surrogate for each mode

G(x

↵
, x

0↵
) =

1

rr

0

1X

`=0

(2`+ 1)P`(cos ✓)G`(t� t

0
; r⇤, r

0
⇤)

- Coordinates: (t, r⇤, ✓,�)

�t = 0.1M

�r⇤ = �r0⇤ = 0.1M

- Solutions stored to disk at 
increments

- Treat radial coordinates of source 
and field points as “parameters” 
for the model

~� = (r⇤, r
0
⇤)

see Wardell, CRG et al (14)



Surrogate building: Initial stuff

- Mode decomposition means building a surrogate for each mode

G(x

↵
, x

0↵
) =

1

rr

0

1X

`=0

(2`+ 1)P`(cos ✓)G`(t� t

0
; r⇤, r

0
⇤)

- Coordinates: (t, r⇤, ✓,�)

�t = 0.1M

�r⇤ = �r0⇤ = 0.1M

- Solutions stored to disk at 
increments

- ~30GB saved to disk

- Treat radial coordinates of source 
and field points as “parameters” 
for the model

~� = (r⇤, r
0
⇤)

see Wardell, CRG et al (14)



Surrogate building: Initial stuff

- Mode decomposition means building a surrogate for each mode

G(x

↵
, x

0↵
) =

1

rr

0

1X

`=0

(2`+ 1)P`(cos ✓)G`(t� t

0
; r⇤, r

0
⇤)

- Coordinates: (t, r⇤, ✓,�)

r0⇤

r⇤

4M 18M
4M

18M

t
200M

�t = 0.1M

�r⇤ = �r0⇤ = 0.1M

- Solutions stored to disk at 
increments

- ~30GB saved to disk

- Treat radial coordinates of source 
and field points as “parameters” 
for the model

~� = (r⇤, r
0
⇤)

see Wardell, CRG et al (14)



t

r⇤

G`=1

- Reduce known features by analytically time-shifting each series by light 
travel time from source point to field point, t ! t� |r⇤ � r0⇤|



t

r⇤

G`=1

�!

t

r⇤

G`=1

- Reduce known features by analytically time-shifting each series by light 
travel time from source point to field point, t ! t� |r⇤ � r0⇤|



t

r⇤

G`=1

�!

t

r⇤

G`=1

- Reduce known features by analytically time-shifting each series by light 
travel time from source point to field point, t ! t� |r⇤ � r0⇤|

- In addition, because only a finite number of modes can be computed we 
introduce a smoothing factor Wardell, CRG et al (14)

G(x

↵
, x

0↵
) ⇡ 1

rr

0

`
maxX

`=0

P`(cos ✓)(2`+ 1)e

�`2/2`2
cut

G`(t� t

0
; r⇤, r

0
⇤)

`
cut

= `
max

/5`
max

= 100



1) Reduced basis via greedy algorithm
Can find a linear approximation space that is nearly optimal

Set of functions

~� = (r⇤, r
0
⇤)



1) Reduced basis via greedy algorithm
Can find a linear approximation space that is nearly optimal

Set of functions "Training space"

~� = (r⇤, r
0
⇤)



1) Reduced basis via greedy algorithm
Can find a linear approximation space that is nearly optimal

Set of functions "Training space"

~� = (r⇤, r
0
⇤)

~µ1

e1

~�1

1) Choose any parameter, 
e1 = G`(t;~�1), C1 = {e1}



1) Reduced basis via greedy algorithm
Can find a linear approximation space that is nearly optimal

Set of functions "Training space"

~� = (r⇤, r
0
⇤)

~µ1

e1

~�1

~�2

e2

1) Choose any parameter, 
e1 = G`(t;~�1), C1 = {e1}

2) Greedy search - Find the parameter  
    that maximizes:

max

t

��G`(t;~�)� P1[G`(t;~�)]
��, P1[·] = e1he1, ·i



1) Reduced basis via greedy algorithm
Can find a linear approximation space that is nearly optimal

Set of functions "Training space"

3) Orthogonalization to get basis vector e2

~� = (r⇤, r
0
⇤)

~µ1

e1

~�1

~�2

e2

1) Choose any parameter, 
e1 = G`(t;~�1), C1 = {e1}

2) Greedy search - Find the parameter  
    that maximizes:

max

t

��G`(t;~�)� P1[G`(t;~�)]
��, P1[·] = e1he1, ·i



r0⇤

r⇤

4M 18M
4M

18M

t
200M



r0⇤

r⇤

4M 18M
4M

18M

t
200M



r0⇤

r⇤

4M 18M
4M

18M

t
200M



r0⇤

r⇤

4M 18M
4M

18M

t
200M



Basis size grows nearly linearly  
mode number



Basis size grows nearly linearly  
mode number

Total compression factor:

C
total

= (`
max

+ 1)

 
`
maxX

`=0

1

C`

!�1

⇡ 151



Basis size grows nearly linearly  
mode number

Total compression factor:

C
total

= (`
max

+ 1)

 
`
maxX

`=0

1

C`

!�1

⇡ 151

Less than 1% of the data is 
needed to capture all features 

up to numerical round-off errors



Shifting by time-of-arrival:

Not shifting by time-of-
arrival:



2) Empirical interpolation
RB approximation:

G`(t;~�) ⇡
NX̀

i=1

C`
i (~�)e

`
i(t)

Barrault+ (04) 
Maday+ (09)

r0⇤

r⇤

4M 18M
4M

18M

t
200M



2) Empirical interpolation
RB approximation:

G`(t;~�) ⇡
NX̀

i=1

C`
i (~�)e

`
i(t)

At n time subsamples of data,   
the coefficients can be solved

C`
i (~�) =

NX̀

j=1

�
V �1
`

�
ij
G`(Tj ;~�)

(V`)ij ⌘ ei(Tj)

Barrault+ (04) 
Maday+ (09)

r0⇤

r⇤

4M 18M
4M

18M

t
200M



2) Empirical interpolation
RB approximation:

G`(t;~�) ⇡
NX̀

i=1

C`
i (~�)e

`
i(t)

At n time subsamples of data,   
the coefficients can be solved

C`
i (~�) =

NX̀

j=1

�
V �1
`

�
ij
G`(Tj ;~�)

(V`)ij ⌘ ei(Tj)

G`(t;~�) ⇡
NX̀

j=1

B`
j(t)G`(Tj ;~�)

B`
j(t) ⌘

NX̀

i=1

e`i(t)
�
V �1
`

�
ij

Barrault+ (04) 
Maday+ (09)

r0⇤

r⇤

4M 18M
4M

18M

t
200M



2) Empirical interpolation
RB approximation:

Find the interpolation nodes through 
another greedy algorithm that 
minimizes the interpolation error

G`(t;~�) ⇡
NX̀

i=1

C`
i (~�)e

`
i(t)

At n time subsamples of data,   
the coefficients can be solved

C`
i (~�) =

NX̀

j=1

�
V �1
`

�
ij
G`(Tj ;~�)

(V`)ij ⌘ ei(Tj)

G`(t;~�) ⇡
NX̀

j=1

B`
j(t)G`(Tj ;~�)

B`
j(t) ⌘

NX̀

i=1

e`i(t)
�
V �1
`

�
ij

Barrault+ (04) 
Maday+ (09)

r0⇤

r⇤

4M 18M
4M

18M

t
200M



2) Empirical interpolation
RB approximation:

Find the interpolation nodes through 
another greedy algorithm that 
minimizes the interpolation error

G`(t;~�) ⇡
NX̀

i=1

C`
i (~�)e

`
i(t)

At n time subsamples of data,   
the coefficients can be solved

C`
i (~�) =

NX̀

j=1

�
V �1
`

�
ij
G`(Tj ;~�)

(V`)ij ⌘ ei(Tj)

G`(t;~�) ⇡
NX̀

j=1

B`
j(t)G`(Tj ;~�)

B`
j(t) ⌘

NX̀

i=1

e`i(t)
�
V �1
`

�
ij

Barrault+ (04) 
Maday+ (09)

r0⇤

r⇤

4M 18M
4M

18M

t
200M



3) Parametric fitting
Mostly interested in finding Green’s function on worldlines

zµ(t) =
�
t, r(t),⇡/2, �(t)

�

r0⇤

r⇤

4M 18M
4M

t
200M



3) Parametric fitting
Mostly interested in finding Green’s function on worldlines

zµ(t) =
�
t, r(t),⇡/2, �(t)

�

r0⇤

r⇤

4M 18M
4M

t
200MBut destroys the affine nature  

of the model (i.e., separability)

As a result, fitting is done on-the-fly  
on a worldline

G`(t; r⇤(t), r
0
⇤) ⇡

NX̀

j=1

B`
j(t)G`(Tj ; r⇤(t), r

0
⇤)



3) Parametric fitting
Mostly interested in finding Green’s function on worldlines

zµ(t) =
�
t, r(t),⇡/2, �(t)

�

r0⇤

r⇤

4M 18M
4M

t
200MBut destroys the affine nature  

of the model (i.e., separability)

As a result, fitting is done on-the-fly  
on a worldline

G`(t; r⇤(t), r
0
⇤) ⇡

NX̀

j=1

B`
j(t)G`(Tj ; r⇤(t), r

0
⇤)

At a given time step, tk, reconstruct 
the Green’s function data in a small 
patch around the worldline 

Fit with spline and interpolate to  

Repeat for all time steps

r⇤(tk)



3) Parametric fitting
Mostly interested in finding Green’s function on worldlines

zµ(t) =
�
t, r(t),⇡/2, �(t)

�

r0⇤

r⇤

4M 18M
4M

t
200MBut destroys the affine nature  

of the model (i.e., separability)

As a result, fitting is done on-the-fly  
on a worldline

G`(t; r⇤(t), r
0
⇤) ⇡

NX̀

j=1

B`
j(t)G`(Tj ; r⇤(t), r

0
⇤)

At a given time step, tk, reconstruct 
the Green’s function data in a small 
patch around the worldline 

Fit with spline and interpolate to  

Repeat for all time steps

r⇤(tk)

�
r⇤(tk), r

0
⇤
�



3) Parametric fitting
Mostly interested in finding Green’s function on worldlines

zµ(t) =
�
t, r(t),⇡/2, �(t)

�

r0⇤

r⇤

4M 18M
4M

t
200MBut destroys the affine nature  

of the model (i.e., separability)

As a result, fitting is done on-the-fly  
on a worldline

G`(t; r⇤(t), r
0
⇤) ⇡

NX̀

j=1

B`
j(t)G`(Tj ; r⇤(t), r

0
⇤)

At a given time step, tk, reconstruct 
the Green’s function data in a small 
patch around the worldline 

Fit with spline and interpolate to  

Repeat for all time steps

r⇤(tk)

�
r⇤(tk), r

0
⇤
�



3) Parametric fitting
Mostly interested in finding Green’s function on worldlines

zµ(t) =
�
t, r(t),⇡/2, �(t)

�

r0⇤

r⇤

4M 18M
4M

t
200MBut destroys the affine nature  

of the model (i.e., separability)

As a result, fitting is done on-the-fly  
on a worldline

G`(t; r⇤(t), r
0
⇤) ⇡

NX̀

j=1

B`
j(t)G`(Tj ; r⇤(t), r

0
⇤)

At a given time step, tk, reconstruct 
the Green’s function data in a small 
patch around the worldline 

Fit with spline and interpolate to  

Repeat for all time steps

r⇤(tk)

�
r⇤(tk), r

0
⇤
�

But have to store to disk  
all data at each Tj…



Surrogate accuracy, speed-up, and size
Eccentric geodesic orbit (e = 0.5, p = 7.2)



Surrogate accuracy, speed-up, and size
Eccentric geodesic orbit (e = 0.5, p = 7.2)



Surrogate accuracy, speed-up, and size
Eccentric geodesic orbit (e = 0.5, p = 7.2)

PDE ~380s

Surrogate ~25s

Speed-up* ~15x

*But not quite an 
apples-to-apples 
comparison.



Surrogate accuracy, speed-up, and size
Eccentric geodesic orbit (e = 0.5, p = 7.2)

PDE ~380s

Surrogate ~25s

Speed-up* ~15x

*But not quite an 
apples-to-apples 
comparison.

Physical memory:  30GB reduced to 2GB



t

Using the surrogate predictions
Eccentric geodesic orbit (e = 0.5, p = 7.2)



t

Using the surrogate predictions
Eccentric geodesic orbit (e = 0.5, p = 7.2)

t

Gtail



Surrogate self-force evaluation
History-dependent part of first-order scalar self-force in 
MiSaTaQuWa form  Quinn (00)

Fµ
hist(⌧) = q2Pµ⌫ lim

✏!0+

Z ⌧�✏

�1
d⌧ 0 r⌫Gret(z

µ, zµ
0
)



Surrogate self-force evaluation
History-dependent part of first-order scalar self-force in 
MiSaTaQuWa form  Quinn (00)

⇡ q2Pµ⌫

⇢Z ⌧

⌧ql

d⌧ 0 Pade
⇥
r⌫Vql(z

µ, zµ
0
)
⇤
+

Z ⌧ql

⌧bc

d⌧ 0 r⌫Gsurr(z
µ, zµ

0
)

+

Z ⌧bc

�1
d⌧ 0 r⌫Gbranch(z

µ, zµ
0
)

�

Fµ
hist(⌧) = q2Pµ⌫ lim

✏!0+

Z ⌧�✏

�1
d⌧ 0 r⌫Gret(z

µ, zµ
0
)



Surrogate self-force evaluation
History-dependent part of first-order scalar self-force in 
MiSaTaQuWa form  Quinn (00)

⇡ q2Pµ⌫

⇢Z ⌧

⌧ql

d⌧ 0 Pade
⇥
r⌫Vql(z

µ, zµ
0
)
⇤
+

Z ⌧ql

⌧bc

d⌧ 0 r⌫Gsurr(z
µ, zµ

0
)

+

Z ⌧bc

�1
d⌧ 0 r⌫Gbranch(z

µ, zµ
0
)

�

Fµ
hist(⌧) = q2Pµ⌫ lim

✏!0+

Z ⌧�✏

�1
d⌧ 0 r⌫Gret(z

µ, zµ
0
)



Surrogate self-force evaluation

● ● ● ● ● ● ●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

● ● ● ●■ ■ ■ ■ ■ ■
■

■

■

■

■
■ ■

■

■

■

■
■ ■ ■ ■ ■ ■ ■ ■

Ft
Fr

3 4 5 6 7 8 9

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

χ

F μ

Eccentric geodesic orbit (e = 0.5, p = 7.2)



Applications
• Higher-order self-force and radiation CRG (12a), (12b)

maµ � Pµ⌫

✓
lim

✏!0+

Z ⌧�✏

�1
d⌧ 0 r⌫Gret(z

µ, zµ
0
)

◆✓
lim

✏!0+

Z ⌧�✏

�1
d⌧ 00 Gret(z

µ, zµ
00
)

◆
,

Pµ⌫ lim
✏!0+

Z ⌧�✏

�1
d⌧ 0 r⌫Gret(z

µ, zµ
0
) lim

✏!0+

Z ⌧ 0�✏

�1
d⌧ 00 Gret(z

µ0
, zµ

00
)



Applications
• Higher-order self-force and radiation CRG (12a), (12b)

maµ � Pµ⌫

✓
lim

✏!0+

Z ⌧�✏

�1
d⌧ 0 r⌫Gret(z

µ, zµ
0
)

◆✓
lim

✏!0+

Z ⌧�✏

�1
d⌧ 00 Gret(z

µ, zµ
00
)

◆
,

Pµ⌫ lim
✏!0+

Z ⌧�✏

�1
d⌧ 0 r⌫Gret(z

µ, zµ
0
) lim

✏!0+

Z ⌧ 0�✏

�1
d⌧ 00 Gret(z

µ0
, zµ

00
)

• Self-consistent evolution

d2zµ

d⌧2
+ �

µ
↵�

dz↵

d⌧

dz�

d⌧

⇡ q2Pµ⌫

⇢Z ⌧

⌧ql

d⌧ 0 Pade
⇥
r⌫Vql(z

µ, zµ
0
)

⇤
+

Z ⌧ql

⌧bc

d⌧ 0 r⌫Gsurr(z
µ, zµ

0
)

�

+ local terms



Applications
• Higher-order self-force and radiation CRG (12a), (12b)

maµ � Pµ⌫

✓
lim

✏!0+

Z ⌧�✏

�1
d⌧ 0 r⌫Gret(z

µ, zµ
0
)

◆✓
lim

✏!0+

Z ⌧�✏

�1
d⌧ 00 Gret(z

µ, zµ
00
)

◆
,

Pµ⌫ lim
✏!0+

Z ⌧�✏

�1
d⌧ 0 r⌫Gret(z

µ, zµ
0
) lim

✏!0+

Z ⌧ 0�✏

�1
d⌧ 00 Gret(z

µ0
, zµ

00
)

• Self-consistent evolution

d2zµ

d⌧2
+ �

µ
↵�

dz↵

d⌧

dz�

d⌧

⇡ q2Pµ⌫

⇢Z ⌧

⌧ql

d⌧ 0 Pade
⇥
r⌫Vql(z

µ, zµ
0
)

⇤
+

Z ⌧ql

⌧bc

d⌧ 0 r⌫Gsurr(z
µ, zµ

0
)

�

+ local terms

• Higher-order, self-consistent evolutions



• Self-consistent field/waveform and at higher orders

�(x↵) = q

Z
⌧ret(x)

⌧bc

d⌧

0
Gsurr(x, z

µ

0
) + q

Z
⌧bc

�1
d⌧

0
Gbranch(x, z

µ

0
)



• Self-consistent field/waveform and at higher orders

�(x↵) = q

Z
⌧ret(x)

⌧bc

d⌧

0
Gsurr(x, z

µ

0
) + q

Z
⌧bc

�1
d⌧

0
Gbranch(x, z

µ

0
)

• Comparing errors in osculating orbits and self-consistent evolutions 
(via two derivatives of the Green’s function)  Pound (unpublished)

Fµ
hist(⌧) = q2Pµ⌫ lim

✏!0+

Z ⌧�✏

�1
d⌧ 0 r⌫Gret(z

µ, zµ
0
)



• Self-consistent field/waveform and at higher orders

�(x↵) = q

Z
⌧ret(x)

⌧bc

d⌧

0
Gsurr(x, z

µ

0
) + q

Z
⌧bc

�1
d⌧

0
Gbranch(x, z

µ

0
)

• Studying basic wave propagation in black hole spacetimes

• Comparing errors in osculating orbits and self-consistent evolutions 
(via two derivatives of the Green’s function)  Pound (unpublished)

Fµ
hist(⌧) = q2Pµ⌫ lim

✏!0+

Z ⌧�✏

�1
d⌧ 0 r⌫Gret(z

µ, zµ
0
)



• Self-consistent field/waveform and at higher orders

�(x↵) = q

Z
⌧ret(x)

⌧bc

d⌧

0
Gsurr(x, z

µ

0
) + q

Z
⌧bc

�1
d⌧

0
Gbranch(x, z

µ

0
)

• Many similar applications in gravity plus others (e.g., NS-BH inspirals)

• Studying basic wave propagation in black hole spacetimes

• Comparing errors in osculating orbits and self-consistent evolutions 
(via two derivatives of the Green’s function)  Pound (unpublished)

Fµ
hist(⌧) = q2Pµ⌫ lim

✏!0+

Z ⌧�✏

�1
d⌧ 0 r⌫Gret(z

µ, zµ
0
)



Improving the surrogate building strategy
The plateau in the max projection errors often hints that a 
different representation of the data may generate a more 
compact basis



Improving the surrogate building strategy

• Amplitude and phase representation of real-valued oscillating data via 
Hilbert transform 
- “Rippling” is a problem 
- Phase at initial times is difficult to estimate 
- Total basis sizes are often larger

The plateau in the max projection errors often hints that a 
different representation of the data may generate a more 
compact basis



Improving the surrogate building strategy

• Amplitude and phase representation of real-valued oscillating data via 
Hilbert transform 
- “Rippling” is a problem 
- Phase at initial times is difficult to estimate 
- Total basis sizes are often larger

• Some other way to represent the data?

The plateau in the max projection errors often hints that a 
different representation of the data may generate a more 
compact basis



Different and useful ways to parametrize the data?

• A more “natural” parametrization might be             and regard           as 
the physical dimension

� = r0⇤ (t, r⇤)

G`(t, r⇤; r
0
⇤) ⇡

NX̀

i=1

B`
i (t, r⇤)G`(Ti, R⇤i; r

0
⇤)



Different and useful ways to parametrize the data?

• A more “natural” parametrization might be             and regard           as 
the physical dimension

� = r0⇤ (t, r⇤)

G`(t, r⇤; r
0
⇤) ⇡

NX̀

i=1

B`
i (t, r⇤)G`(Ti, R⇤i; r

0
⇤)

Fµ ⇠ q2Pµ⌫
`
maxX

`=0

1

r0
(2`+ 1)e�`2/2`2

cut

Z
dt0 P`(cos �(t))

NX̀

i=1

B`
i (t, r⇤(t))G`(Ti, R⇤i; r

0
⇤)



Different and useful ways to parametrize the data?

• A more “natural” parametrization might be             and regard           as 
the physical dimension

� = r0⇤ (t, r⇤)

G`(t, r⇤; r
0
⇤) ⇡

NX̀

i=1

B`
i (t, r⇤)G`(Ti, R⇤i; r

0
⇤)

Fµ ⇠ q2Pµ⌫
`
maxX

`=0

1

r0
(2`+ 1)e�`2/2`2

cut

Z
dt0 P`(cos �(t))

NX̀

i=1

B`
i (t, r⇤(t))G`(Ti, R⇤i; r

0
⇤)

= q2Pµ⌫
`
maxX

`=0

1

r0
(2`+ 1)e�`2/2`2

cut

NX̀

i=1

G`(Ti, R⇤i; r
0
⇤)

Z
dt0 P`(cos �(t))B

`
i (t, r⇤(t))



Different and useful ways to parametrize the data?

• A more “natural” parametrization might be             and regard           as 
the physical dimension

� = r0⇤ (t, r⇤)

• There are some hints that including mode number may provide 
significant data reduction but not yet known how to evaluate surrogate

G`(t, r⇤; r
0
⇤) ⇡

NX̀

i=1

B`
i (t, r⇤)G`(Ti, R⇤i; r

0
⇤)

Fµ ⇠ q2Pµ⌫
`
maxX

`=0

1

r0
(2`+ 1)e�`2/2`2

cut

Z
dt0 P`(cos �(t))

NX̀

i=1

B`
i (t, r⇤(t))G`(Ti, R⇤i; r

0
⇤)

= q2Pµ⌫
`
maxX

`=0

1

r0
(2`+ 1)e�`2/2`2

cut

NX̀

i=1

G`(Ti, R⇤i; r
0
⇤)

Z
dt0 P`(cos �(t))B

`
i (t, r⇤(t))



Different and useful ways to parametrize the data?

• A more “natural” parametrization might be             and regard           as 
the physical dimension

� = r0⇤ (t, r⇤)

• There are some hints that including mode number may provide 
significant data reduction but not yet known how to evaluate surrogate

Maybe try “invasive” approaches that project the wave equation 
onto the small vector space spanned by the basis

G`(t, r⇤; r
0
⇤) ⇡

NX̀

i=1

B`
i (t, r⇤)G`(Ti, R⇤i; r

0
⇤)

Fµ ⇠ q2Pµ⌫
`
maxX

`=0

1

r0
(2`+ 1)e�`2/2`2

cut

Z
dt0 P`(cos �(t))

NX̀

i=1

B`
i (t, r⇤(t))G`(Ti, R⇤i; r

0
⇤)

= q2Pµ⌫
`
maxX

`=0

1

r0
(2`+ 1)e�`2/2`2

cut

NX̀

i=1

G`(Ti, R⇤i; r
0
⇤)

Z
dt0 P`(cos �(t))B

`
i (t, r⇤(t))



Summary & Outlook
• Green’s function methods have many advantages to offer but 

significant challenges to overcome to be practical

• Reduced-order surrogate modeling offers a promising way to use 
Green’s functions efficiently and accurately for self-force calculations

• For a given worldline, the surrogate is more than 15x faster to evaluate 
than solving the wave equation, with little loss of accuracy

• Extending to Kerr spacetime is straightforward but may involve (much?) 
larger data sets because of extra parameters and reduced symmetry

• How to compute Green’s function for gravitational perturbations?  
- Lorenz gauge has unstable non-radiative modes…  
- Accuracy and speed of metric reconstruction from curvature scalars?

• Other choices in the surrogate modeling strategy may (should!) 
improve both the speed and size of the Green’s function surrogate


