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What are the advantages of using Green’s functions?
• Compute only once
• Nearly all physical quantities of interest are calculated via 

convolution integrals
• Arbitrary motion for self-force
• Geometric interpretation (see also J. Thornburg’s talk)

• Higher-order self-force
• Self-consistent (higher-order) self-forced evolution
• Self-consistent inspiral waveforms
• Arguably straightforward to implement once known
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“Direct integration of the MiSaTaQuWa equation: 
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Goal: 

Find a way for Green’s functions to be efficient and accurate to use 
for practical self-force and related computations.
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Numerical Green’s functions are globally valid approximations but 
utilizing analytic approximations at early and late times is extremely 
helpful 
- Quasi-local expansions Ottewill & Wardell (08); Wardell’s thesis  
- Pade approximants Casals et al (09)  
- Method of matched expansions Anderson & Wiseman (05); Casals et al (13)
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Numerical Green’s functions are globally valid approximations but 
utilizing analytic approximations at early and late times is extremely 
helpful 
- Quasi-local expansions Ottewill & Wardell (08); Wardell’s thesis  
- Pade approximants Casals et al (09)  
- Method of matched expansions Anderson & Wiseman (05); Casals et al (13)

When these analytical approximations (e.g., in Schwarzschild) are 
available we use numerical Green’s functions for intermediate times
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The result
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However, the steps for building a Green’s function surrogate are 
necessarily a little different than for waveforms

• Provides one with dynamics, field content, and waveforms

• Source and field points are time-dependent for worldline 
convolutions
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- Reduce known features by analytically time-shifting each series by light 
travel time from source point to field point, t ! t� |r⇤ � r0⇤|

- In addition, because only a finite number of modes can be computed we 
introduce a smoothing factor Wardell, CRG et al (14)
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3) Orthogonalization to get basis vector e2
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Less than 1% of the data is 
needed to capture all features 

up to numerical round-off errors
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Surrogate ~25s

Speed-up* ~15x

*But not quite an 
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comparison.

Physical memory:  30GB reduced to 2GB
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• Higher-order, self-consistent evolutions
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• Comparing errors in osculating orbits and self-consistent evolutions 
(via two derivatives of the Green’s function)  Pound (unpublished)
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• Studying basic wave propagation in black hole spacetimes

• Comparing errors in osculating orbits and self-consistent evolutions 
(via two derivatives of the Green’s function)  Pound (unpublished)
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• Many similar applications in gravity plus others (e.g., NS-BH inspirals)

• Studying basic wave propagation in black hole spacetimes

• Comparing errors in osculating orbits and self-consistent evolutions 
(via two derivatives of the Green’s function)  Pound (unpublished)
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- Phase at initial times is difficult to estimate 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Improving the surrogate building strategy

• Amplitude and phase representation of real-valued oscillating data via 
Hilbert transform 
- “Rippling” is a problem 
- Phase at initial times is difficult to estimate 
- Total basis sizes are often larger

• Some other way to represent the data?

The plateau in the max projection errors often hints that a 
different representation of the data may generate a more 
compact basis



Different and useful ways to parametrize the data?
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Different and useful ways to parametrize the data?

• A more “natural” parametrization might be             and regard           as 
the physical dimension

� = r0⇤ (t, r⇤)

• There are some hints that including mode number may provide 
significant data reduction but not yet known how to evaluate surrogate
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Different and useful ways to parametrize the data?

• A more “natural” parametrization might be             and regard           as 
the physical dimension

� = r0⇤ (t, r⇤)

• There are some hints that including mode number may provide 
significant data reduction but not yet known how to evaluate surrogate

Maybe try “invasive” approaches that project the wave equation 
onto the small vector space spanned by the basis
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Summary & Outlook
• Green’s function methods have many advantages to offer but 

significant challenges to overcome to be practical

• Reduced-order surrogate modeling offers a promising way to use 
Green’s functions efficiently and accurately for self-force calculations

• For a given worldline, the surrogate is more than 15x faster to evaluate 
than solving the wave equation, with little loss of accuracy

• Extending to Kerr spacetime is straightforward but may involve (much?) 
larger data sets because of extra parameters and reduced symmetry

• How to compute Green’s function for gravitational perturbations?  
- Lorenz gauge has unstable non-radiative modes…  
- Accuracy and speed of metric reconstruction from curvature scalars?

• Other choices in the surrogate modeling strategy may (should!) 
improve both the speed and size of the Green’s function surrogate


