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Motivating Question

Given a gauge-dependent self force (GSF),
how can one use it to learn “observables”
that describe post-geodesic corrections

to the orbital dynamics in Kerr?

"Direct integration of the MiSaTaQuWa equation:

Possible in principle, but, not efficient in practice.”

Yasushi Mino (2004)
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Radiation-reaction formula in Kerr

The four first integrals P of Kerr geodesic are

E = —uo‘f((f) L, = uaf((f’) = —g((%u“uﬁ Q= Kaﬁu“uﬁ

Carter ('68)

The dissipative part of the first-order GSF is related with
their time-averaged change rates.

dP oP :
a\ _ @ rBri,diss.
(&)= Gy

v This formula is gauge-invariant. Mino, arXiv:0302075

. . Drasco, Hughes and
v Far easy to implement as its r.h.s. Flanagan, arXiv:0505075

are related to gravitational-wave fluxes .
. e . Sago, Tanaka, Hikida and
at infinity and the horizon Nakano, arXiv:0506092
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Cute ideas! But...

The radiation reaction formula does not capture
the conservative effect of the first-order GSF in Kerr.

v Detweiler’s redshift variable
v ISCO shift
v’ Orbital precession

v Tidal invariants ...
Where are they?
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Mino’s approach in modern view

Take the 4-dim affine-parametrized geodesic Hamiltonian

1
H(O)(x, u) = Eg(%;u“ u,

After a canonical transformation from (x, u) to (X, P),
Hamilton's equations read

dP, dx« where

=( =V

dr dr v®=(1,0,0,0)

Schmidt, arXiv:0202090

v The radiation reaction formula is relevant to the first equation.

v The conservative GSF is relevant to the second equation.

c.f. Mino, arXiv:0506003
5122



So, our answer is to...

Develop the 4-dim Hamiltonian formulation
of the MiSaTaQuWa equation, and use it.

Today: focus on only the conservative dynamics
("turning off” dissipation) and its applications.

v ISCO formula with inclination.

v "Afirst law” of binary mechanics on generic orbits.
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Perturbed Hamiltonian in Kerr

Given a fixed perturbed metric, the perturbed motion
Is described by the 4-dim affine-parametrized Hamiltonian

| | R
Hlx, u;vy] := Eg(’é)(x)u“uv — Eh&)[x;y]uﬂuv + O(,uz) where
1
T H[y]|y = _5
The fixed source orbit: Interaction Hamiltonian

an “osculating” Kerr geodesic

Detweiler and Whiting, arXiv:0202086
Pound, arXiv:1506.06245
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4-dim action-angle variables

We use the action-angle variables for bound geodesics
in Kerr as the reference canonical coordinates.

v Angle variables w® := w%(x, u)

Measure the phase of motion in the temporal/spatial directions.

v Action variables J, := J,(x, u)

The one-to-one function of the first integrals of motion P

Hinderer and Flanagan, arXiv:0805.3337
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Perturbed Hamilton’s equations

Jo=

1

Derivative w.r.t. the proper time in the perturbed metric

ow @

_ (6H(”[7]) 8H(”[7])
J w

H®P[w, J,y] : the interaction Hamiltonian

Since (J,) =0, the orbital average

8H(1)D’]> 2= (")

w? = <w(%)(J)> +< .
implies the 4-dim frequencies of the perturbed orbit.

(except the resonant orbits.)
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Gauge and motion

Perturbed motion is gauge-dependent.  Pound, arxiv:1506.02894

For an infinitesimal gauge transformation o6.x* = ¢ + O(n*)

n " o= " :
5§ch - — 5§W0" - 6fH(1)[y]|y ) where

0J o

c.f. Vine and Flanagan, arXiv:1503.04727

In our formulation, only the perturbed frequencies
and the averaged change rate of J are gauge-invariant.

NP 2N o S LY _ 1

1 fT 6w (T) = 6w (=T) 0
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Gauge (canonical) transformation

Using the Green function and Fourier series expansion,

HV[y] ~ f dt’ ut'u” Gﬁ;?fg}(x, ) u®

Y

~ Z Gow(J: J(}/)) o~ i@ (ST )W +i(n-w)
n,n’

1

Symmetric under J, < JY

All the periodically varying terms can be always eliminated
by a gauge transformation.

Due to the symmetry, the averaged term depends only on J.

Hi( D, = (HO Y1) = 1)
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Local particle Hamiltonian

For some gauge-fixed J, one can always replace the source-
dependent Hamiltonian to the “averaged” local Hamiltonian.

HJ) 2= HOU) + 5 Hin )

1

Avoid the double count of “source” and “field” contributions.

The Hamilton's equations
OH(J) o_ .a_ OHU)
— =0 w- =W =

Jo = ow @ oJ ,

describe gauge-invariant parts of the perturbed frequencies.
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Innermost Stable Spherical Orbit

Using action-angle form, the Innermost Stable Spherical Orbit
(“circular inclined orbit”): ISSO is defined by

. OH
Wisso = a7, ), :0: 0
“Constant-radius” spherical orbit Wilkins ('72)

Changing variables J, —» Q% := w®/w’, the ISSO is given by

(%) 0 where
3Q40Q" |50 2:=20+ 10+ 0P

a=(0,¢) 2
~ the redshift variable

det
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ISCO Frequency shift vs Spin

Parametrization: (M +m)Qisco = MQglo(x) (1 +nCaly) + OGr))

Equatorial limit of the ISSO condition: (8°%/0Q%*)lisco = 0

4 : : : —
- Reconstruction —_— |
136 - Directintegration =

1.24

1.2

-1 -08 -06 -04 -02 0 02 04 006 08 1
Y :=S*/M

S.l. + Barack, Dolan, Le Tiec, Nakano, Shah, Tanaka and Warburton,
arxXiv:1404.6133
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Benchmark results

100 —————
2.5PN (spin EOB) | |

10 L 3PN (ISCO)

o
T

&
p—
T

Relative errors
1 —(6Cq/Co)

T GSF results has aIready
callbrated EOB

-1 -08 -06 -04 —().2 0 0.2 04 06 038 1

0.01 -

x:=S*/M

Given an analytic model of spinning binaries, one can judge
whether it is good to describe the strong-field dynamics.
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“A” first law of binary mechanics

(M, S)
The GSF dynamics in Kerr background
) is the large mass-ratio limit of binaries.

$

Strictly speaking, our Hamiltonian
is a function of g, M and S, too.

M 7-{:7-{(J3H9M9S)
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Particle Hamiltonian first law

Variation of Hamiltonian 8 H and Hamilton's equation read

(M + E) = Q1 6T, = 261 + za 6M + Qpy 6 + OW®)

(M+E)-2Q"J;, =zu+zsu M +2Qpu S

c.f. Le Tiec, arXiv:1311.3836

where
Z + < (67-{) dshif bl f
BH = — |7 “Redshift variable” of Kerr
p\OM |, s)
. 1 ~ -
Jcr Zﬂja, 1 Eﬂim E :_‘]I

These relations are valid for generic strong-field orbits in Kerr,
but are established only "along the orbit” as we use local GSF.
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Two-body Hamiltonian first law

In the post-Newtonian (PN) theory, the first laws of binary
BH mechanics are established, using the 2-body Hamiltonian.

."\(7”1,514

Hapm(r, p;mg, Sy)

SMapm — QOLapM = ) (2a0Mma + Qb5 o)

Mapm — 2Q2LApM = Z(Zama +2Q,5 )

)

M and L are the global ADM quantities

Le Tiec, Blanchet and Whiting, arXiv:1111.5378
Blanchet, Buonanno and Le Tiec, arXiv:1211.1060

Le Tiec, arXiv:1506.05648
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Synergy with the PN theory

Both first laws are formally identical if
v the effective metric is that of Detweller and Whiting.

v/ objects’ physical parameters are identical in each theory.

Conjecture:

Given fixed frequencies, our gauge choice for local J implies
(M +E, J3) & (Mpondis LBondi)

for generic perturbed orbits in Kerr.

Supporting evidences: Le Tiec, Barausse and Buonanno, arXiv:1111.5609

Gralla and Le Tiec, arXiv:1210.8444
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Summary

Hamiltonian formulation is very efficient
for devising observables due to GSF in Kerr.

Things we’ve learned:

Local observables: the orbital-averaged frequencies
and the redshift variable.

Global observables: likely the total energy and the angular
momentum of the binary system.

The choice of gauge would be important.
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Future directions

Formalism:

Including the dissipative GSF to model inspirals

Proof the conjectures on the particle Hamiltonian first law

What is the action for our Hamiltonian?

Applications:

Implement the ISSO formula.
(Re)derive other observables; Periastron advance?

Synergy with PN/NR/EOB via the first law; what can we do?
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(Merci beaucoup.)



