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Why? Local problem Global problem Application

Modeling EMRIs

treat m as source of perturbation of
M ’s metric gµν :

gµν = gµν + εh1
µν + ε2h2

µν + . . .

where ε ∼ m/M
represent motion of m via worldline
zµ satisfying

D2zµ

dτ2 = εFµ
1 + ε2Fµ

2 + . . .

force is small; inspiral occurs very slowly, on time scale τ ∼ 1/ε

suppose we neglect Fµ
2 ; leads to error δ

(
D2zµ
dτ2

)
∼ ε2

⇒ error in position δzµ ∼ ε2τ2

⇒ after inspiral time τ ∼ 1/ε, error δzµ ∼ 1
∴ accurately describing orbital evolution requires second order

—see Moxon’s talk for more details
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Why? Local problem Global problem Application

Improving models of IMRIs and similar-mass binaries

at interface between
models, SF data can fix
high-order PN terms and
calibrate EOB
already done at first order
second-order results will
further improve these
models
also can use SF to directly
model IMRIs

Binary parameter space

[Leor Barack]
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Why? Local problem Global problem Application

How do you replace an object with a worldline?

we treat m as source of perturbation of external background gµν :
gµν = gµν + εh1

µν + ε2h2
µν + . . .

we want to represent motion as worldline in background
we want to encode all relevant information about object in multipole
moments on worldline

formalism due to Mino, Sasaki, Tanaka (1996), Quinn, Wald (1996), Detweiler, Whiting (2002-03), Gralla, Wald (2008, 2012),
Pound (2009, 2012), Harte (2012)
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Why? Local problem Global problem Application

Matched asymptotic expansions

outer expansion: in external
universe, treat field of M as
background
inner expansion: in inner region,
treat field of m as background
in buffer region, feed information
from inner expansion into outer
expansion
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Why? Local problem Global problem Application

The inner expansion

Zoom in on object
use scaled distance s̃ ∼ s/ε to keep size of object fixed, send other
distances to infinity as ε→ 0
unperturbed object defines background spacetime gIµν in inner
expansion
buffer region at asymptotic infinity s � m
⇒ can define object’s multipole moments as those of gIµν
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Why? Local problem Global problem Application

Relating the expansions

In buffer region, metric near object
in M is mapped to

metric near γ in ME

metric asymptotically far from
object in MI
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Why? Local problem Global problem Application

Expansion in the buffer region

in coordinates centered on γ, reexpand outer expansion for small s:

εnh(n)
µν = εn

[
1
sn h(n,−n)

µν + s−n+1h(n,−n+1)
µν + s−n+2h(n,−n+2)

µν + . . .

]
why no 1/sn+1?

I would lead to εnh(n)
µν ∼ εn

sn+1 = 1
εs̃n

I negative power of ε couldn’t match anything in inner expansion
more information from inner expansion:

I εn/sn = 1/s̃n is zeroth-order in inner expansion
⇒ h(n,−n)

µν is determined by multipole moments of isolated object
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Why? Local problem Global problem Application

General solution in buffer region

What appears in the solution?
put expansion into nth-order vacuum Einstein equation, solve order
by order in s
expand each h(n,p)

µν in spherical harmonics (wrt angles on sphere
around s = 0)
given a worldline γ, the solution at all orders is fully characterized by

1 object’s multipole moments (and corrections thereto): ∼ Y`m

s`+1

2 smooth solutions to vacuum wave equation: ∼ s`Y `m

everything else made of (linear or nonlinear) combinations of the
above

Self field and regular field
multipole moments define hS(n)

µν ; interpret as bound field of object
smooth homogeneous solutions define hR(n)

µν ; free radiation,
determined by global boundary conditions
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Why? Local problem Global problem Application

First and second order solutions

First order
h(1)
µν = hS(1)

µν + hR(1)
µν

hS(1)
µν ∼ 1/s + O(r0) defined by mass monopole m

hR(1)
µν is undetermined homogenous solution regular at s = 0

evolution equations: ṁ = 0 and aµ(0) = 0
(where D2zµ

dτ2 = aµ(0) + εaµ(1) + . . .)

Second order
h(2)
µν = hS(2)

µν + hR(2)
µν

hS(2)
µν ∼ 1/s2 + O(1/r) defined by

1 monopole correction δm
2 mass dipole Mµ (set to zero)
3 spin dipole Sµ

evolution equations: Ṡµ = 0, ˙δm = . . ., and aµ(1) = . . .
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Why? Local problem Global problem Application

Perturbed position at first order [Mino et al, Gralla-Wald, Pound]

Reminder: mass dipole moment M i :
small displacement of center of mass from origin of coordinates

e.g., Newtonian field m
|x i − δz i |

≈ m
|x i |

+ mδz jnj
|x i |2

⇒ M i = mδz i

buffer region

0

m

r

t
Definition of object’s worldline:

work in coordinates (t, x i)
centered on a curve γ
mass dipole is integral over
small sphere:
M i = 3

8π lim
s→0

∮
h2
µνuµuνnidS

equation of motion of zµ:
whatever ensures Mµ ≡ 0
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Why? Local problem Global problem Application

Perturbed position at second order [Pound]

Problem:
mass dipole moment defined for asymptotically flat spacetimes
beyond zeroth order, inner expansion is not asymptotically flat

Solution:
start in gauge
mass-centered on zµ

demand that
transformation to
practical (e.g., Lorenz)
gauge does not move zµ

i.e., insist ∆zµ = 0
ensures worldline in the
two gauges is the same
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Why? Local problem Global problem Application

0th-, 1st-, and 2nd-order equations of motion

0th order, arbitrary object: D2zµ

dτ2 = O(m) (geodesic motion in gµν)

1st order, arbitrary object [MiSaTaQuWa]:

D2zµ

dτ2 = − 1
2
(
gαδ + uαuδ

)(
2hR1
δβ;γ − hR1

βγ;δ
)

uβuγ+ 1
2m Rα

βγδuβSγδ+O(m2)

(motion of spinning test body in gµν + hR1
µν )

2nd-order, nonspinning, spherical object [Pound]:
D2zµ

dτ2 = − 1
2 (gµν + uµuν)

(
gνρ − hR

ν
ρ
) (

2hR
ρσ;λ − hR

σλ;ρ
)

uσuλ + O(m3)

(geodesic motion in gµν + hR
µν)

still need 2nd-order equation incorporating spin & quadrupole
moments
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Why? Local problem Global problem Application

Point particles and punctures [Barack et al, Detweiler, Pound, Gralla]

replace “self-field” with “singular field”

at 1st order, can use this to replace object with a point particle
beyond 1st order, point particles not well defined—but can replace
object with a puncture, a local singularity in the field, moving on γ,
equipped with the object’s multipole moments
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Why? Local problem Global problem Application

How you replace an object with a worldline

use a local expansion of hSn
µν near γ as a “puncture” that moves on γ

solve field equations for hn
µν and hRn

µν

move the puncture using equation of motion

out here, solve
for physical field

in here, solve
for regular field

use in eq. of
mot. to evolve

here, change variables
using

Adam Pound Second-order self-force: formulation and applications 18 / 33
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Why? Local problem Global problem Application

Solving the perturbed Einstein globally

solving the local problem told us how to replace the small object
with a moving puncture in the field equations:

Eµν [hR1] = −Eµν [hP1] inside Γ
Eµν [h1] = 0 outside Γ

Eµν [hR2] = δ2Rµν [h1, h1]− Eµν [hP2] inside Γ
Eµν [h2] = δ2Rµν [h1, h1] outside Γ

D2zµ

dτ2 = −1
2(gµν + uµuν)(gνδ − hRν δ)(2hRδβ;γ − hRβγ;δ)uβuγ

where Γ is a tube around zµ, Eµν [h] ∼ �hµν , hPn
µν ≈ hSn

µν ,
hRn
µν = hn

µν − hPn
µν

the global problem: how do we solve these equations in practice?
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Why? Local problem Global problem Application

Solving the perturbed Einstein globally

solving the local problem told us how to replace the small object
with a moving puncture in the field equations:

Eµν [hR1] = −Eµν [hP1] inside Γ
Eµν [h1] = 0 outside Γ

Eµν [hR2] = δ2Rµν [h1, h1]− Eµν [hP2] inside Γ
Eµν [h2] = δ2Rµν [h1, h1] outside Γ

D2zµ

dτ2 = −1
2(gµν + uµuν)(gνδ − hRν δ)(2hRδβ;γ − hRβγ;δ)uβuγ

where Γ is a tube around zµ, Eµν [h] ∼ �hµν , hPn
µν ≈ hSn

µν ,
hRn
µν = hn

µν − hPn
µν

the global problem: how do we solve these equations in practice?

Adam Pound Second-order self-force: formulation and applications 20 / 33



Why? Local problem Global problem Application

Typical calculation at first order

approximate the source orbit
as a bound geodesic
impose outgoing-wave BCs at
I+ and H+

solve field equation
numerically, compute
self-force from solution
system radiates forever; at
any given time, BH has
already absorbed infinite
energy
but on short sections of time
the approximation is accurate
breaks down on dephasing
time ∼ 1/

√
ε, when

|zµ − zµ0 | ∼ M
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Why? Local problem Global problem Application

Infrared problems at second order

suppose we try to use “typical”
h1
µν to construct source for h2

µν

because |zµ − zµ0 | blows up
with time, h2

µν does likewise
because h1

µν contains outgoing
waves at all past times, the
source δ2Rµν [h1] decays too
slowly, and its retarded integral
does not exist
instead, we must construct a
uniform approximation

I h1
µν must include evolution

of orbit
I radiation must decay to zero

in infinite past
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Why? Local problem Global problem Application

Resolutions of the infrared problem

Option 1
solve field equations and equation of motion simultaneously in the
time domain
problems:

I limited accuracy
I gauge instabilities
I have to find good initial data

Option 2:
again use matched expansions, use different expansions in different
regions
advantages:

I allows calculations in frequency domain; high accuracy
I no instabilities
I better control over behavior in each region, easier to impose correct

initial data

Adam Pound Second-order self-force: formulation and applications 23 / 33



Why? Local problem Global problem Application

Matched expansions [Pound, Moxon, Flanagan, Hinderer, Yamada, Isoyama, Tanaka]

multiscale
expansion

here

post-
Minkowski
expansion

here

near-
horizon
expansion
here

Multiscale expansion
multiscale expansion: expand
orbital parameters and fields as

J = J0(t̃) + εJ1(t̃) + . . .

hn
µν ∼

∑
kk′

hn
kk′(t̃)e−ikqr (t̃)−ik′qφ(t̃)

where (J , q) are action-angle
variables for zµ, and t̃ ∼ εt is a
“slow time”
solve for hn

kk′ at fixed t̃ with
standard frequency-domain
techniques

Get boundary conditions from
post-Minkowski expansion: expand hn

µν in powers of M
near-horizon expansion: expand hn

µν in powers of gravitational
potential near horizon
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Why? Local problem Global problem Application

Quasicircular orbits in Schwarzschild [Pound, Wardell, Warburton, Miller, Barack]

Multiscale expansion of the
worldline:

I radius rp = r0(t̃) + εr1(t̃) + . . .
I frequency

Ω = Ω0(t̃) + εΩ1(t̃) + . . .
I orbital phase φp = 1

ε

∫
Ωdt̃

Multiscale expansion of the field:

hn
µν =

∑
ilm

hn
ilm(t̃, r)e−imφp(t̃)Y ilm

µν

we take a “snapshot”, doing our calculations at some t̃ = t̃0

Adam Pound Second-order self-force: formulation and applications 26 / 33
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Why? Local problem Global problem Application

Field equations

Eµν [hR1] = −Eµν [hP1] inside Γ
Eµν [h1] = 0 outside Γ

Eµν [hR2] = δ2Rµν [h1, h1]− Eµν [hP2] inside Γ
Eµν [h2] = δ2Rµν [h1, h1] outside Γ

D2zµ

dτ2 = εFµ
1 + ε2Fµ

2

hP1
µν ∼

m
|xα − zα|

hP2
µν ∼

m2

|xα − zα|2 + δm + mhR1

|xα − zα|
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Why? Local problem Global problem Application

Boundary conditions from PM/Near-Horizon expansions

At large r , adapt Blanchet-Damour PM methods
The source behaves as δ2R0

il0 ∼
Sil0
r2

For l = 0, 2, hereditary terms arise:

h2
il0 ∼ ln(r/ε)Sil0 +

∫ 0

−∞

d
dt̃

Sil0(t̃ − εr + z̃) ln z̃ dz̃

At r ≈ 2M , similar iteration using near-horizon retarded Green’s function
(Semi)hereditary terms arise:

h2
il0 ∼ (r − 2M )δ2Ril0 +

∫ 0

−∞
δ2Ril0(t̃ + εr + z̃)dz̃

We use these asymptotic approximations as punctures h∞Pil0 and hHPil0 at
infinity/horizon
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Why? Local problem Global problem Application

Specialization to ` = 0

Advantages:
Fewer fields h2

i00 to deal with: i = 1, 2, 3, 6
Clean split into dissipative and conservative sectors

I Dissipative sector: h2
200, ∂t̃h1

100, ∂t̃h1
300, ∂t̃h1

600, ṙ0
I Conservative sector: h2

100, h2
300, h2

600, r1

Things to mind:
First-order perturbation must include slowly varying correction to
BH mass: hδMBH

i00

We absorb δMBH (t̃0) (and hereditary integrals) into background
mass M
We take our “snapshot” at the preferred time when Ω(t̃0) = Ω0(t̃0)
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Why? Local problem Global problem Application

Dissipative sector

Wave equation:

∂2
r h2

200 ∼ δ2R0
200 − ∂2

r hP2
200

− ∂t̃h1
100

Puncture:

hP2
200 ∼ mhR1 + δm + ṙ0

Gauge condition:

∂rh2
200 ∼ ∂t̃h1

100

2 5 10 20 50 100

10- 7

10- 5

0.001

What comes out of the solution?
The balance law! Ė0 + ˙δMBH = F∞
First major result/consistency check of numerical implementation
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Why? Local problem Global problem Application

Conservative sector

Wave equation:

∂2
r h2

200 ∼ δ2R0
200 − ∂2

r hP2
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− ∂t̃h1
100

Puncture:

hP2
200 ∼ mhR1 + δm + ṙ0

Gauge condition:

∂rh2
200 ∼ ∂t̃h1

100

2 5 10 20 50 100

10- 7

10- 5

0.001

What comes out of the solution?
The binding energy E = MBondi −m −Mirr
(previously obtained from first law of binary mechanics)
But computing the source accurately near r = r0 is very
difficult—see Wardell’s talk
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Why? Local problem Global problem Application

Conclusion

Status of formalism
“local problem” solved, but still missing higher-moment effects at
second order
“global problem” under development, solved in some cases
—see talks by Moxon and Wardell

Status of concrete computations for quasicircular orbits in Schwarzschild
“snapshot calculation” essentially complete for ` = 0 field
—see talk by Wardell
portions of calculation complete for ` > 0
long-term evolution straightforward after snapshot computations
complete
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Why? Local problem Global problem Application

Hierarchy of self-force models [Hinderer and Flanagan]

on an inspiral timescale t ∼ 1/ε, the phase of the gravitational wave
has an expansion

φ = 1
ε

[
φ0 + εφ1 + O

(
ε2
)]

a model that gets φ0 right is probably enough for signal detection in
many cases
a model that gets both φ0 and φ1 is enough for parameter extraction
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• averaged dissipative piece of Fµ

1

Adiabatic order determined by
• averaged dissipative piece of Fµ

2
• conservative piece of Fµ

1
• oscillatory dissipative piece of Fµ

1

Post-adiabatic order
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Why? Local problem Global problem Application

Using SF to directly model IMRIs and similar-mass binaries

Comparisons for equal-mass binaries

SF results use “mass symmetrized” model: m
M →

mM
(m+M)2

with mass-symmetrization, second-order self-force might be able to
directly model even comparable-mass binaries
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