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Why?

Modeling EMRIs

m treat m as source of perturbation of
M'’s metric g,

7 8 :guu+6hiu+€2hiu+-~-
m

where € ~ m/M

m represent motion of m via worldline
zH satisfying

D22+
dr?

m force is small; inspiral occurs very slowly, on time scale 7 ~ 1/e¢

=eFl' +EFY + ...

. D?2# 2
m suppose we neglect F'; leads to error 6( = ) ~ €
2.2

= error in position dz* ~ €T
= after inspiral time 7 ~ 1/, error §z/ ~ 1
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Why?

Modeling EMRIs

m treat m as source of perturbation of
M'’s metric g,

7 8uv = gw,—l—eh,lw +€2h;21,1/+"'
m

where € ~ m/M

m represent motion of m via worldline
zH satisfying

DQzIL

dr2

m force is small; inspiral occurs very slowly, on time scale 7 ~ 1/e¢

=eFl' +EFY + ...

. D?2# 2
m suppose we neglect F'; leads to error 6( = ) ~ €
2.2

= error in position dz* ~ €T
= after inspiral time 7 ~ 1/, error §z/ ~ 1

*. accurately describing orbital evolution requires second order
—see Moxon's talk for more details
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Why?

Improving models of IMRIs and similar-mass binaries

Binary parameter space

m at interface between
models, SF data can fix -
high-order PN terms and
calibrate EOB

m already done at first order

m second-order results will
further improve these
models

Separation —»

Perturbation theory,
self-force

Numerical Relativity

1 Mass ratio —» @

[Leor Barack]
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Why?

Improving models of IMRIs and similar-mass binaries

Binary parameter space

Perturbation theory,
self-force

m also can use SF to directly 0 :
model IMRIs 1 Mass ratio —» @

[Leor Barack]
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© Self-force theory: the local problem
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Local problem

How do you replace an object with a worldline?

m we treat m as source of perturbation of external background g, :
1 272
8w :guV+6huV+€ hW—&—...

m we want to represent motion as worldline in background

m we want to encode all relevant information about object in multipole
moments on worldline

diffeomorphism

time , 7 ~

/ . Mse

Body in exact spacetime Representation of motion
in external spacetime

B formalism due to Mino, Sasaki, Tanaka (1996), Quinn, Wald (1996), Detweiler, Whiting (2002-03), Gralla, Wald (2008, 2012),
Pound (2009, 2012), Harte (2012)
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Local problem

Matched asymptotic expansions

m outer expansion: in external

universe, treat field of M as m
background inner region
. . . (s ~m)
m inner expansion: in inner region,
treat field of m as background bUf.fer
m in buffer region, feed information nao—
from inner expansion into outer external universe (s ~ M)

expansion
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Local problem
The inner expansion

Zoom in on object

m use scaled distance 3 ~ s/e to keep size of object fixed, send other
distances to infinity as € — 0

m unperturbed object defines background spacetime gj,,, in inner
expansion

m buffer region at asymptotic infinity s > m
= can define object’s multipole moments as those of g;,,,,

diffeomorphism )
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Local problem

Relating the expansions

In buffer region, metric near object
in M is mapped to

m metric near v in Mg

®m metric asymptotically far from
object in M




Local problem

Expansion in the buffer region

® in coordinates centered on -y, reexpand outer expansion for small s:
1
ny(n) _ n (n,—n) —n+1y(n,—n+1) —n+27 (n,—n+2)
€"h, =€ snh,w +s by +s iy +...

m why no 1/s"*1?
e" 1

» would lead to e”hﬁ? ~ T = o
> negative power of € couldn't match anything in inner expansion

m more information from inner expansion:
> €"/s" =1/3" is zeroth-order in inner expansion
= hfﬁ,’*") is determined by multipole moments of isolated object
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Local problem
General solution in buffer region

What appears in the solution?
® put expansion into nth-order vacuum Einstein equation, solve order
by order in s
m expand each hfﬁ’p) in spherical harmonics (wrt angles on sphere
around s = 0)

m given a worldline ~, the solution at all orders is fully characterized by
object’s multipole moments (and corrections thereto): ~ %
smooth solutions to vacuum wave equation: ~ s’ Y™

m everything else made of (linear or nonlinear) combinations of the

above

Self field and regular field
m multipole moments define hSl(,”); interpret as bound field of object

m smooth homogeneous solutions define h}}ls"); free radiation,
determined by global boundary conditions
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Local problem
First and second order solutions

First order
o Y = B 4 Y
] h,i(,l) ~1/s+ O(r") defined by mass monopole m
hf,j(l) is undetermined homogenous solution regular at s =0
m evolution equatlons m =0 and a ©) = =0

(where 2 dT = a(o) + ea( - )

Second order
m b = hs? + s
] hfl(,z) ~1/s%+ O(1/r) defined by
monopole correction dm
mass dipole M* (set to zero)
spin dipole S*

m evolution equations: St =0, 6m=..., and a“l) =...

—~
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Local problem

Pertu rbed pOSition at fi rst Order [Mino et al, Gralla-Wald, Pound]

Reminder: mass dipole moment M?:

m small displacement of center of mass from origin of coordinates

g m m  mdin; . .
m e.g., Newtonian field ——— ~ — 723 M* = moz"
|zt =027 fa?] [
, 2 =0 Definition of object’s worldline:
A —o m work in coordinates (t, z%)
oz centered on a curve y
buffer region m mass dipole is integral over
—
) small sphere:
>® M= 2 lim hil,u“u”n’ds
T s—0
® m equation of motion of z/:
' whatever ensures M* = (
0 r
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Local problem

Pertu rbed pOSition at fi rst Order [Mino et al, Gralla-Wald, Pound]

Reminder: mass dipole moment M?:
m small displacement of center of mass from origin of coordinates
m m  mén;

EE AT oz

m e.g., Newtonian field

Definition of object’s worldline:

A m work in coordinates (¢, z*)
centered on a curve y
m mass dipole is integral over
small sphere:
Mi=2 lim?{h2 utu’ntds
u[l nv
m equation of motion of z/:
whatever ensures M* =0

~Y
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Local problem
Perturbed position at second order o

Problem:
m mass dipole moment defined for asymptotically flat spacetimes

m beyond zeroth order, inner expansion is not asymptotically flat
Solution:

m start in gauge
mass-centered on z#

m demand that

Azt transformation to
practical (e.g., Lorenz)
gauge does not move z*

m ie., insist Az =0

m ensures worldline in the
two gauges is the same

~Y
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Local problem

Oth-, 1st-, and 2nd-order equations of motion

D2
Oth order, arbitrary object: TZQ = O(m) (geodesic motion in g, )
T
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Local problem

Oth-, 1st-, and 2nd-order equations of motion

1st order, arbitrary object (misaTaquwal:

D? ¢
dr2

= (0" )AL — HELS) W R S O(m)

(motion of spinning test body in g, + i)
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Local problem

Oth-, 1st-, and 2nd-order equations of motion

2nd-order, nonspinning, spherical object (pound:
Dzzﬂ v A
D 3 ) (0~ ) (2B~ HES,) 070+ O

(geodesic motion in g, + hy,)

Second-order self-force: formulation and applications

Adam Pound




Local problem

Oth-, 1st-, and 2nd-order equations of motion

2nd-order, nonspinning, spherical object (pound:
D2+

7 =5 (0 ) (00 = ) (2 — hip) u”u + O(m?)

poiA T
(geodesic motion in g, + hy,)

m still need 2nd-order equation incorporating spin & quadrupole
moments
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Local problem

POi nt pa rtiCIGS a nd pU nCtU res [Barack et al, Detweiler, Pound, Gralla]

m replace “self-field” with “singular field”

full metric g,,,, "self field" hS,  effective metric g, + R,
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Local problem
POi nt pa rtiCIGS a nd pU n Ct U res [Barack et al, Detweiler, Pound, Gralla]
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full metric g, "self field" hfw effective metric g, + Af},
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Local problem

POi nt pa rtiCIGS a nd pU nCtU res [Barack et al, Detweiler, Pound, Gralla]

m replace “self-field” with “singular field”

|
)

full metric g,,,, effective metric g, + hf},j

singular field A,
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Local problem
POi nt pa rtiCIGS a nd pU n Ct U res [Barack et al, Detweiler, Pound, Gralla]

m replace “self-field” with “singular field”

w

full metric g,,,, effective metric g, + hf},j

. ) g
singular field A,

m at 1st order, can use this to replace object with a point particle

m beyond 1st order, point particles not well defined—but can replace
object with a puncture, a local singularity in the field, moving on 7,
equipped with the object's multipole moments
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Local problem

How you replace an object with a worldline

1 Sn “ "
m use a local expansion of /7 near v as a “puncture” that moves on y

= solve field equations for A%, and A/

m move the puncture using equation of motion

use hft[4]in eq. of
mot. to evolve ¥

out here, solve
for physical field 7., (7]

in here, solve here, change variables
for regular field nfr[y]  USING Ay, = hi + il

Adam Pound Second-order self-force: formulation and applications



Global problem

Outline

© Self-force theory: the global problem
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Solving the perturbed Einstein globally

m solving the local problem told us how to replace the small object
with a moving puncture in the field equations:
E[h®] = —E,,[h"'] inside T
E,[h'] =0 outside T
B [h®% = 6°R,, [h*, '] — B, [h7?] inside T
E,,[h?] = 6°R,,[h',h'] outside T

D?z Lo v 5 RS R R B
2 —5(9“ +uu”) (9, = b 0) (b — hgys)u”w
where T is a tube around 2#, E,[h] ~ Ohyy, B = b3,
Wi = b, — Bl

m the global problem: how do we solve these equations in practice?
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Solving the perturbed Einstein globally
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Global problem
Typical calculation at first order

m approximate the source orbit
as a bound geodesic

m impose outgoing-wave BCs at
It and HT

m solve field equation
numerically, compute
self-force from solution

'H+
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Global problem
Typical calculation at first order

m approximate the source orbit
as a bound geodesic

Geodesic ® impose outgoing-wave BCs at

approximation It and HT

accurate to 1st - .
) ; m solve field equation
order in region

of size numerically, compute
< 1/4/€ self-force from solution

H system radiates forever; at
any given time, BH has
already absorbed infinite
energy

m but on short sections of time
the approximation is accurate

m breaks down on dephasing
time ~ 1/4/€, when
2 — |~ M
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Global problem
Infrared problems at second order

m suppose we try to use “typical”
h/, to construct source for A2,

m because |2 — 2}/| blows up
with time, hfw does likewise

1 . .

m because h,,, contains outgoing
waves at all past times, the
source 62R,,,, [h'] decays too
slowly, and its retarded integral
does not exist

m instead, we must construct a
uniform approximation
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Global problem
Infrared problems at second order

m suppose we try to use “typical”
h/, to construct source for A2,

m because |2 — 2}/| blows up
with time, hfw does likewise

m because hiy contains outgoing
waves at all past times, the
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slowly, and its retarded integral
does not exist
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> h}w must include evolution
of orbit

> radiation must decay to zero
in infinite past
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Global problem

Resolutions of the infrared problem

Option 1
m solve field equations and equation of motion simultaneously in the
time domain
m problems:
> limited accuracy
> gauge instabilities
> have to find good initial data

Option 2:

m again use matched expansions, use different expansions in different
regions
m advantages:
> allows calculations in frequency domain; high accuracy
> no instabilities

> better control over behavior in each region, easier to impose correct
initial data

Adam Pound Second-order self-force: formulation and applications



Global problem

M atChed eXpa nSionS [Pound, Moxon, Flanagan, Hinderer, Yamada, Isoyama, Tanaka]

Multiscale expansion

m multiscale expansion: expand

multiscale . .
orbital parameters and fields as

expansion
here

J=Jo(t) +ehi(t)+...

hity ~ > higs (F) e~ har (D =ik ao (1)
kk’

where (J, ¢) are action-angle

" " prStk'_ variables for z#, and  ~ €t is a
orizon inkowski “ T

expansion expansion slow time ~

here here  m solve for Ay, at fixed ¢ with

standard frequency-domain
techniques

Get boundary conditions from
m post-Minkowski expansion: expand A", in powers of M

g
m near-horizon expansion: expand hy;, in powers of gravitational
potential near horizon

Adam Pound Second-order self-force: formulation and applications
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Application

Outline

e Application: quasicircular orbits in Schwarzschild
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Application

Q UaSiCi rCU |ar Orbits in SChWa rZSCh i |d [Pound, Wardell, Warburton, Miller, Barack]

inspiraling
orbit
m Multiscale expansion of the

worldline:

» frequency
0= Qo(t) +691(t) + ... B
> orbital phase ¢, = %fﬂdt

m Multiscale expansion of the field:

by = D Wi (£, 1) e Dy i

ilm

m we take a “snapshot”, doing our calculations at some # = %,

» radius 7, = 10(#) +er (1) + ...
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Application

Q UaSiCi rCU |ar Orbits in SChWa rZSCh i |d [Pound, Warde” , Warburton, Miller, Barack]
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Application
Field equations

Epu[th} = _E;uj[hpl] inside I
E.[h'] =0 outsideT

E,[h®?] = 6°R,,[h', h'] — E,,[hT?] inside T

E,[h?] = 6°R,,[h',h'] outside T

D2z
TZQ = EF{L + €2F$L
T
P1 m
hl“’ |$o¢ _ ZO“
P2 m? dm + mhR?
(224 |xa_za‘2 |x(x_zoc|
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Application
Field equations

zl’m[hﬂm] = Ezlm[hylnlm] inside T’
Ellm[hlm] =0 outsideT

E,.[h®?] = 6°R,,[h', h'] — E,,[hT?] inside T

E,[h?] = 6°R,,[h',h'] outside T

D2z
TTZQ :EF{L+62F$‘

P1 m

hl“’ |$o¢ 7204‘

P2 m? dm + mhR?
|xa_za‘2 |x(x_zoc|
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Application
Field equations

zl’m[hﬂm] = Ezlm[hylnlm] inside I’
Efn[hjim] =0 outside T
EY 52RY h 1Y EL pl inside T
ilm[ ] zlm[ ilm/ kl”m”] 1,lm[ ]l7n] zlm[ jlm] inside
Zolm[ 2 ] 62R,le[ jll/m 7hkl"m”] E,le[h m] OutS|de F
D%+
g = H R
pPL. M
(137 |$o¢ _ ZO“
1P2 m? dm + mh™!
v |x“—z“\2 |{L‘“—z°‘|
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Application
Field equations

zlm[hyl’nl%] inside T

'le[h =-F
Ellm[hjlm] =0 outside T

7lm]

Ezolm[ ] 52Rzlm[ Gl m! hkl”m”] zlm[hjlm] 7,1lm[h31lm] inside I’
?lm[ 2 ] 62R'le[ jll’m 7hkl"m”] Ezlm[h m] outside I'
d
&0« FY
dt
o< F}
P1 m
by ~ 20 — 29|
P2 m? dm 4+ mh™!
v |xa_za‘2 |x(x_zoc|
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Application
Field equations

zlm[hyl’nl%] inside T

'le[h =-F
Ellm[hjlm] =0 outside T

7lm]

Ezolm[ ] 52Rzlm[ Gl m! hkl”m”] zlm[hjlm] 7,1lm[h31lm] inside I’
?lm[ 2 ] 62R'le[ jll’m 7hkl"m”] Ezlm[h m] outside I'

d
—ioocFlt
dt

o< FY

hzlm ~ m|7’ - Ir0|
hzlm ~ m?log |r — ro| + (dm + mh®" 4+ r + fo)|r — 1o
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Application
Boundary conditions from PM /Near-Horizon expansions

At large r, adapt Blanchet-Damour PM methods
m The source behaves as §2RY ~ i
m For [ = 0,2, hereditary terms arise:

0

hiio ~ In(r/€) S0 + / % ao(t —er+2)Inz dz

At r =~ 2M, similar iteration using near-horizon retarded Green's function

m (Semi)hereditary terms arise:

0
hi2lO ~ (7” — 2M)($2Rilg -+ / 52Ril0(¥ +er + E)dé

— 00

We use these asymptotic approximations as punctures hSo” and hJEP at
infinity /horizon
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Application

Specialization to £/ =0

Advantages:
m Fewer fields hZ), to deal with: i =1,2,3,6
m Clean split into dissipative and conservative sectors
» Dissipative sector: h3g, O:hioo, F:hioo, Oxhdoo, To
» Conservative sector: hiy, h3oo, heoo, T1
Things to mind:
m First-order perturbation must include slowly varying correction to
BH mass: h%\g’?”
m We absorb § My () (and hereditary integrals) into background
mass M
m We take our “snapshot” at the preferred time when Q () = Qo(%)
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Application

Dissipative sector

m Wave equation:
0.001 1 ey

33’&00 ~ 523800 82h200
- aih%oo

m Puncture:

m Gauge condition:

8rh§00 ~ aih%oo

What comes out of the solution?

Adam Pound Second-order self-force: formulation and applications



Application

Dissipative sector

m Wave equation:
0.001 1 ey

33’&00 ~ 523800 82h200
- aih%oo

m Puncture:

m Gauge condition: 5 5 10 20 50 100

2 1 r/M
arh200 ~ aihloo

What comes out of the solution?
m The balance law! Ey + 6 Mgy = Foo
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Application

Dissipative sector

m Wave equation:
0.001 1 ey

33’&00 ~ 523800 82h200
- aih%oo

m Puncture:

m Gauge condition:

8rh§00 ~ aih%oo

What comes out of the solution?
m The balance law! Ey + 6 Mgy = Foo
m First major result/consistency check of numerical implementation
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Application

Conservative sector

m Wave equation:
0.001 1 ey

33’&00 ~ 523800 82h200
- aih%oo

m Puncture:

m Gauge condition:

8rh§00 ~ aih%oo

What comes out of the solution?
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Application

Conservative sector

m Wave equation:
0.001 1 ey

62 hzOO 52RZOO 62 hzOO
— 0} (hisg + higy)

m Puncture:

m Gauge condition:

8rh§00 ~ aih%oo
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Adam Pound Second-order self-force: formulation and applications



Application

Conservative sector

m Wave equation:
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— 0} (hisg + higy)
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m Gauge condition:
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Conservative sector

m Wave equation:
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m Gauge condition:
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0° 0.01 0 10¢

Orh300 ~ Oihing o
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Application

Conservative sector

m Wave equation:

62 hzOO 52RZOO 62 hzOO
— 0} (hisg + higy)

100.0001

m Puncture:

Source

m Gauge condition:

10 L i L
0° 0.01 0 10¢

Orh300 ~ Oihing o

What comes out of the solution?
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Application

Conservative sector

m Wave equation:

62 hzOO 52RZOO 62 hzOO
— 0} (hisg + higy)

m Puncture:

Source

Ry ~ m? + mh® + 5m +
m Gauge condition:

8rh§00 ~ aih%oo

What comes out of the solution?

Adam Pound

100.0001

108k

10 L i L
0° 0.01 0 10t
(r = 2M)/M
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Application

Conservative sector

m Wave equation:

62 hzOO 52RZOO 62 hzOO
— 0} (hisg + higy)

m Puncture:

Source

Ry ~ m? + mh® + 5m +
m Gauge condition:

2 2
Oy hiOO ~ thO

What comes out of the solution?

Adam Pound

100.0001

108k

10 L i L
0° 0.01 0 10t
(r = 2M)/M
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Application

Conservative sector

m Wave equation:

62 hzOO 52RZOO 62 hzOO
— 0} (hisg + higy)

m Puncture:

Source

Ry ~ m? + mh® + 5m +
m Gauge condition:

2 2
Oy hiOO ~ thO

What comes out of the solution?

m The binding energy E = Mponai —

100.0001

108k

10

(r—2M)/M

m — Mz‘?"r

(previously obtained from first law of binary mechanics)
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Application
Conservative sector

m Wave equation:

62 hzOO 52RZOO 62 hzOO
— 0} (hisg + higy)

100.0001

m Puncture:

Source

Ry ~ m? + mh® + 5m +

108k

m Gauge condition:

a7”h’i200 ~ h?oo C (r-2M)M

What comes out of the solution?
m The binding energy E = Mpondgi — m — My
(previously obtained from first law of binary mechanics)

m But computing the source accurately near r = rq is very
difficult—see Wardell's talk
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Application
Conclusion

Status of formalism

m “local problem” solved, but still missing higher-moment effects at
second order

m “global problem” under development, solved in some cases
—see talks by Moxon and Wardell

Status of concrete computations for quasicircular orbits in Schwarzschild

m “snapshot calculation” essentially complete for £ = 0 field
—see talk by Wardell

m portions of calculation complete for £ > 0

m long-term evolution straightforward after snapshot computations
complete

Adam Pound
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Application
H iera rChy Of Self_force m Od els [Hinderer and Flanagan]

m on an inspiral timescale ¢ ~ 1/¢, the phase of the gravitational wave
has an expansion

6=~ [0+ b + O)

m a model that gets ¢ right is probably enough for signal detection in
many cases

m a model that gets both ¢y and ¢; is enough for parameter extraction
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Application
H iera rChy Of Self_force m Od els [Hinderer and Flanagan]

Adiabatic order

determined by

e averaged dissipative piece of F}'
, the phase of the gravitational wave

m a model that gets ¢ right is probably enough for signal detection in
many cases

m a model that gets both ¢y and ¢; is enough for parameter extraction
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Application

Hierarchy of self-force models_. post-adiabatic order
Adiabatic order

determined by

e averaged dissipative piece of F}'
e conservative piece of F!'

e oscillatory dissipative piece of F!

determined by
e averaged dissipative piece of F}'

has an expahsi

m a model that gets ¢ right is probably enough for signal detection in
many cases

m a model that gets both ¢y and ¢; is enough for parameter extraction

Adam Pound Second-order self-force: formulation and applications



Application

Using SF to directly model IMRIs and similar-mass binaries

Comparisons for equal-mass binaries

Gravitational binding energy

Orbital precession

. . — P | e
15F : g .0.04 - F.()B/’ 7 Schw
o L ’ )
< :
S L4r -0‘06:—
S I GSF_,
13 R 008 ,
< | o
1.2+ P \ N
t - ] /‘HHHNBH\M":
0.0l 7 - 2 31 315 32 325 ]
N £ -~ 1 =012 A
>~ 0F —— 4 0.0003 F GSI E
KD —— 0y e ;
001F ‘ RS F
0.01 0.02 0.03 -0.0003 - 3PN . -
| I U & EY P e oo
(m+ M)Qg 332 34 36 38
[Le Tiec et al] J

M . " . m mM
m SF results use “mass symmetrized” model: M T Gt dDZ

m with mass-symmetrization, second-order self-force might be able to
directly model even comparable-mass binaries
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