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Introduction

• Review of Perturbation Theory

• Setting Up the Second-Order Problem

• Detweiler’s Second-Order Formalism

• Local Singular Field
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Perturbation Theory Primer
We begin by assuming the small mass m is a compact object (point
particle) moving along a geodesic of the background, γ0.
• We model the physical spacetime in a perturbative manner,

gab = g0
ab + hab,

where g0
ab is the Schwarzschild metric and hab ∼ O(m).

• Expand Gab(g0 + h) about the background g0:

Gab(g0 + h) = G
(1)
ab (g0, h) + G

(2)
ab (g0, h) + · · · ,

with G
(n)
ab (g0, h) ∼ O(mn).

• Given the perturbing stress-energy tensor Tab(γ0) ∼ O(m), the
Einstein equations may be written to first-order in m as

G
(1)
ab (g0, h1,ret) = 8πTab(γ0) + O(m2),
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Perturbation Theory Primer

• Decompose the retarded metric perturbation h1,ret
ab into a

locally-defined singular term, h1S
ab , and a non-local, regular term h1R

ab ,

G
(1)
ab (g0, h1S) = Tab(γ0), G

(1)
ab (g0, h1R) = 0.

• Through mode-sum regularization techniques1, we remove the
singular behavior of the retarded field by subtraction; schematically
this is written as a difference of the retarded and singular fields,

hR
ab = hret

ab − hS
ab.

1L. Barack and A. Ori, Phys. Rev. D 61 061502 (2000)
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Preparations for Second-Order

Given h1R
ab , the regularized vacuum solution to the Einstein equations at

O(m), we adopt the notion of geodesic motion in the “regularly
perturbed” spacetime at first-order, since

Gab(g0 + h1R) = O(m2)

implies that an observer local to the particle will be unable to distinguish
h1R
ab from the background geometry.

When expressed on g0, the worldline of the particle is perturbed away
from the background geodesic by an O(m) correction,

γ0 → γ0 + γ1R,

which is determined by solving the first-order geodesic equation,

dua
ds

=
1
2
ubuc

∂

∂xa
(
g0
ab + h1R

ab

)
.
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Preparations for Second-Order

In the case of circular orbits, the orbital frequency of the particle is
adjusted in g0 + h1R,

Ω2 =
M

r3 −
r − 3M
2r2 ūaūb∂rh

1R
ab + O(m2).

Focusing on the conservative self-force effects, the orbit remains circular;
the self-force effects shift the particle’s orbital radius,

rnew = rold −
r2(r − 3M)

6M
ūaūb∂rh

1R
ab ,

bringing the orbital frequency into the expected form,

Ω2 =
M

r3
new

+ O(m2).
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Second-Order Equations*
One anticipates that second-order perturbations will now follow (almost)
exactly as the first-order:

Gab(g0 + h1R, h1S + h2) = Tab(γ0 + γ1R) + O(m3).

We may even expand both sides,

G
(1)
ab (g0, h1) + G

(1)
ab (g0, h2) + G

(2)
ab (g0, h1)

= 8πT (1)
ab (γ0) + 8πT (2)

ab (γ0, γ1) +O(m3).

With the deviation to the worldline in hand, we can also visualize the
stress-energy expansions,

T
(1)
ab (γ0) =

m u0
au

0
b

ut0
√
−g0

δ(3)[X i − γ i0(T )],

T
(2)
ab (γ0, γ1) = m δtab δ

(3)[X i − γ i0(T )]

− m u0
au

0
b

ut0
√
−g0

γj1R
∂

∂X j
δ(3)[X i − γ i0(T )].
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Complications and Workarounds

• One term in the second-order expansion, G (2)
ab (g0, h1), is ill-defined

(even distributionally) on the worldline of the particle.
• Unlike the first-order problem, we have no clear way of solving for

h2,ret directly.
• Instead, we start directly with the adoption of a regular/singular

split,
h2 = h2S + h2S† + h2R,

with h2S† arising from the adjustments to h1S from the addition of
h1R to the background.

• Schematically, you might think that h2S† belongs with h1S, but it is
second-order in the mass:

h1S + h2S† =
m

r

[
1 +

x2

R2

(
1 +

m

R

)
+ · · ·

]
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Introduce a Working Regular/Singular Split

• We understand that the singular field is known only as an
asymptotic expansion of the true singular field hS. In terms of
locally inertial and Cartesian coordinates, x i , one might expect,

h1S = h1s + O(mx4/rR4)

h2S + h2S† = h2s + h2s† + O(m2x4/r2R4)

• At first order, h1s is known accurately enough to allow
h1r ≡ h1,ret − h1s to be C 2 on γ0.

• For second-order calculations, we sidestep the definition of h2,ret and
solve directly for h2r:

G
(1)
ab (g0, h2r) = −G (2)

ab (g0, h1r)− [G
(2)
ab (g0, h1r) + G

(1)
ab (g0, h2s)]

+ [8πTab(γ0 + γ1r)− G
(1)
ab (g0 + h1r, h1s)]

− [8πTab(γ0)− G
(1)
ab (g0, h1s)]
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Calculating h1s and h2s

Steve began considering local expansions of h1S by looking at asymptotic
expansions of a small Schwarzschild black hole. For an isolated
Schwarzschild black hole of mass m, the local geometry may be written
as,

g schw
ab = ηab + 0h

schw
ab

with

0h
schw
ab dxadxb =

2m
r

dt2 +
2m

r − 2m
nknldx

kdx l ,

given ni ≡ ∇i r . Expanding as m/r � 1 but remaining finite,

0h
schw
ab dxadxb =

2m
r

dt2 +
2m
r

nknldx
kdx l︸ ︷︷ ︸

0h
1schw
ab dxadxb

+
∑
j=2

(
2m
r

)j

nknldx
kdx l︸ ︷︷ ︸

0h
jschw
ab dxadxb

,
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Calculating h1s and h2s

• At quadrupolar and higher orders, one considers perturbations to the
Schwarzschild geometry, sourced by some external curvature (in this
case, the large black hole M). These perturbations are matched in
the buffer region to an expansion of the background geometry about
the geodesic γ0 + γ1R.2

• After matching, the singular pieces may be identified by taking the
m/r � 1 limit:

2h
1s
abdx

adxb =
2m
r

[(1 + r2E (2)) dt2 + (1− 3r2E (2)) (dr2 + σAB dxAdxB)]

− 4mrE (2)A drdxA − 2mrE (2)AB dxAdxB + 2
m

3r
B(2)A dtdxA

2K. S. Thorne and J. B. Hartle, Phys. Rev. D 31, 1815 (1985).
Capra 19 12 J. Thompson



Calculating h1s and h2s

In particular, some of Steve’s last work was in computing the A-K pieces
of the local singular fields, for use in the Einstein field equation
expansions:

2G(1)(g0, h)|A =
2(r − 2M)2

r2

 ∂2

∂r2
E

 +
2(r − 2M)(3r − 5M)

r3

(
∂

∂r
E

)
−

(r − 2M)(` + 2)(` − 1)

r3
E

−
`(` + 2)(` + 1)(` − 1)(r − 2M)

2r3
F +

2`(` + 1)(r − 2M)2

r3

(
∂

∂r
H

)
+

2`(` + 1)(r − 2M)(2r − 3M)

r4
H

−
2(r − 2M)3

r4

(
∂

∂r
K

)
−

(2r + 4M + r` + r`2)(r − 2M)2

r5
K
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In Summary

• Steve was very passionate about the second-order self-force problem!

• His formalism gives us a different view of some of the challenges
faced at second-order.
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