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Motivation:
extreme mass
ratio binaries

Major goal of eLISA is to study
Extreme Mass Ratio Inspirals.

Binary black hole/neutron star :
systems with a mass ratio e

~1:1,000,000.
Many (>10,000) orbits.

Generic (eccentric, inclined)
orbits.

Larger black hole spinning.

Ultimate goal: ~10° accurate

| .
evolved generic orbits in Kerr | /

with gravitational self-force.

Image credit: eLISA /NGO Yellow book (ftp:/ / ftp.rssd.esa.int/pub/ojennric/ NGO_YB /NGO_YB.pdf)



Motivation:
extreme mass
ratio binaries

Corrections to orbital phase have
contributions at adiabatic (1/¢)
order involving (time averaged)
first-order metric perturbation.
Post-1-adiabatic order includes
contributions from remaining
first-order perturbation and from

second-order metric perturbation.
[Hinderer & Flanagan, Phys. Rev. D78, 064028]
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Image credit: eLISA /NGO Yellow book (ftp:/ / ftp.rssd.esa.int/pub/ojennric/ NGO_YB /NGO_YB.pdf)



Self-force approach

uBVBuO‘ = ¢

[N
UBVB”UJQ =0

Expand the metric into a
background plus a perturbation

GaB = Jap + mlh((xlg + m%hfﬂ)

Gaplgas] = 8TT g

Regularise
| R S
hes = hap + Piag |

Votion described by geodesic In
perturbed spacetime or equivalently
Dy accelerated motion In
packground.




FFormal prescription at first order

* Foundations and formalism by now well understood (talks by A. Harte, P.

Taylor).

* Solve the coupled system of equations for the motion of a point particle and

its retarded field.

* Regularise retarded field to obtain finite regular field.
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Formal prescription at second order

D, [h] = Ohy,, + 2R, >, hP
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Why is calculating the self-force
so hard?

Several considerations arise when trying to turn this formal
prescription into a practical numerical scheme:

+ System is coupled: the field is sourced by the past worldline
and the worldline accelerates due to the field => delay

differential equation. -

# Self-force is gauge dependent. 10
0.5

* O-function sources difficult to 00
handle numerically; retarded
field diverges like 1.

.

* Second order field sourced by
first order field and more singular (r?).



Self-force computation strategies

1R

ab’

+ Several methods have emerged for computing h_;", dealing with the

numerical issues of point sources, singular fields.

* These broadly fall into three different categories (+ dissipative approx)

Worldline convolution Mode-sum Effective source
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Easiest to implement Well-defined at second order

Geometric interpretation



Worldline convolution



Worldline convolution

* MiSaTaQuWa equation gives the regularised self-force in terms
of local components and a tail term.

e—0

f* = (local terms) + lim ¢* / VGt (2, 2")dr’

— OO

* Local terms are easily calculated.
* Tail contains contribution to the self-force from the past.

* If we can compute the Green function along the world-line,
then we’re done: just integrate this to get the regularised self-
force for any orbit.



Matched expansions

* Compute Green function using Worldiine of the particle
matched asymptotic expansions. Current location of the particle - z(7)

% EXp ansions for recent p ast f Quasilocal integral back At along the worldline
(quasilocal) and distant past. J, % / TA VG, oydr”

* Recent past - series expansion Matching point - 2(t -A1)

of Hadamard form; distant past -
quasi-normal modes + branch-cut
or “numerical Gaussian” or
real-frequency integration.

Boundary of normal neighborhood where
Hadamard parametrix is valid

Integral outside quasilocal region

T—AT
q° / VoG, erdr’

* Stitch expansions in overlapping /
matching region. /
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Worldline convolution

* Advantages: * Disadvantages:
* Only need to compute the * Computing the Green function
Green function once and we can be hard.

have the self-force for all orbits. . ave to compute the Green

* Avoids numerical cancellation function for all pairs of points x
by directly computing the and x’ (see talk by C. Galley).
regularised field. * Not naturally suited to self-

* May yield geometric insight consistent evolution (see talk by
(see talk by J. Thornburg). C. Galley).

# Green function can be applied * Second order not so well
to other problems. understood (see talk by C.

Galley).



Mode-sum regularisation



Mode-sum regularisation

* Retarded field diverges close to the world-line.

* Decompose into spherical harmonic modes, the singularity is
“smeared out” over a 2-sphere and each /,m mode is finite.
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* Need to subtract “regularisation parameters” to render the sum
over modes finite. [L. Barack and A. Ori, Phys. Rev. D 61, 061502]



Mode-sum regularisation

* Solve a 2D wave equation for each [,m mode

— 55— Vi| @im = Simd(r = ro(t))

* Similar equations for electromagnetic and gravitational cases.

* Solution can be found in time domain as either 1+1D or
characteristic evolution. d-function needs careful treatment through
particular finite differencing schemes/multi-domain methods.

* In the frequency domain this becomes an ordinary differential
equation for each [,m,w. This is particularly convenient for orbits
where the number of frequencies is small (e.g. circular orbits). o-
function appears as matching condition between two
homogeneous solutions.



Mode-sum regularisation

* In order to regularise, decompose ®° into spherical /spheroidal /
spin-weighted spherical / spin-weighted spheroidal harmonic modes

S (t,r) = / Y (0, 6)d0

and subtract mode by mode.
* Typically only know ®° approximately as an expansion for large .
* Coefficients of this expansion are known as regularisation parameters.

* Compute a regularised self-force by subtracting regularisation
parameters from unregularised self-force

Zfz All‘l' — B —




Mode-sum regularisation

o
| -:
— @ v ]
0.01f ° ]
10~} A
1078} . X
10—8,
10—10,
10—12 | | e
1 2 ) 10
/




Mode-sum regularisation

* Advantages: * Disadvantages:
* Suitable for fast, high- # [ll-suited to unbound or
accuracy frequency domain highly eccentric orbits (see
calculations (talks by M. van talk by S. Hopper).

de Meent, L. Barack,
P. Giudice, D. Bini, C.
Kavanagh).

* [ll-suited to Kerr due to use of
spherical harmonics (talks by
C. Kavanagh, M. van de

* In time domain leads to fast, Meent).

accurate 1+1D evolutions. :
+ No clear extension to second

* Relatively easy to implement. order (see talk by J. Moxon).

* Not naturally suited to self-
consistent evolution
(see talk by J. Moxon).



Effective source regularisation



Effective source regularisation

+ Derive an evolution equation for ®%
[Barack and Golbourn (2007), Detweiler and Vega (2008)]

+ Always work with ®®instead of ®et

+ No distributional sources and no
singular fields.

Du® o q af o, B R
+ If ®"is chosen appropriately, then - 4= m(7) (g*" + u®u”)V®
we can directly use ® in the dm _ UV, 0F
equations of motion. dr




Effective source regularisation

+ If ®°is exactly the Detweiler-
Whiting singular field, ®"is a
solution of the homogeneous
wave equation.

+ If ®° is only approximately the
Detweiler-Whiting singular
field, then the equation for %
has an effective source, S.

+ § typically finite, but of limited
differentiability on worldline.




Effective source regularisation

* Advantages:
* Everything is finite. No
distributional sources or
singular fields.

* Does not rely on any
underlying symmetry. Can be
applied to generic orbits in

generic spacetimes (see talk
by J. Thornburg).

* Naturally suited to selt-

consistent evolution (see talk
by P. Diener).

* Works at second order (see
talk by A. Pound)

* Disadvantages:

# Relatively cost!
computational

Y

y when

evolved in 2+1]

D or 3+1D (see

talks by P. Diener, J.

Thornburg).

* Effective source is often a very
complicated expression (see

talk by J. Thornburg).

* Problems with

evolving

Lorenz gauge metric
perturbations in time domain.



Results



Case || Worldline Mode-sum Effective Source
— || circular (apprx) [59];
‘= || generic radial [74]; circular [56, 57, 65,
% || (quasilocal) [67, 68]; | circular [75-78]; 84-86;
§ generic [69-71]; eccentric [79-83]; eccentric [87];
= | S || static [72]; static [72]; evolving [88];
‘S| 9| accelerated [73];
. circular [89];
= || generic [68]; faqugtorlal. 190, 91]; circular [96];
2 || accelerated [73]; inclined circular [92]; eccentric [97];
’ accelerated [93]; ’
static [94, 95];
- static [72];
% eccentric [82, 98];
2 : _ static (Schwarzschild-
: static [72); de Sitter) [99]; -
=| 3 radial (Reissner-
/|| @ Nordstrém) [100];
=B equatorial [90]; -
N accelerated [93];
= radial [102];
g% ceneric circular [103-111];
N 3 [ 1 .
. § (quasilocal) [101]; i;(é)?.ntmc 82, 112— | circular [122];
E ?B: osculating [121];
@) ] circul.ar equatorial [90]; circular [125]
T || (quasilocal) [59]; accelerated [93]; . .
<l branch cut [123]; circular [119, 124]; generic [126];

Table from: B. Wardell, Prog. Theor. Phys. 179




Results from self-force calculations

+ Self-force methods produce
highly accurate
(>20 significant digits) results

+ Probe strong-field regime,
highly eccentric orbits (talks by
J. Thornburg, M. Colleoni)

+ Potential for “exact” results:
“experimental mathematics’

J

= “Exact” functional methods

+ Highly spinning black holes.

Inspiral into Gargantua
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We model the inspiral of a compact object into a more massive black hole rotating very near the
theoretical maximum. We find that once the body enters the near-horizon regime the gravitational
radiation is characterized by a constant frequency, equal to (twice) the horizon frequency, with an
exponentially damped profile. This contrasts with the usual “chirping” behavior and, if detected,

would constitute a “smoking gun” for a near-extremal black hole in nature.

I. INTRODUCTION

General relativity imposes a hard upper limit on how
fast a black hole can rotate. For a black hole of mass M,
the angular momentum J must satisfy

J < GM?/e, (1)

where G is Newton’s constant and c is the speed of light
(both hereafter set to unity). Above this value, the event
horizon disappears and the spacetime contains a naked
singularity. It is impossible to spin up a black hole above
this limit with any continuous process featuring reason-
able matter [1], and there is much evidence in favor of the
“cosmic censorship conjecture” [2] that no generic initial
data can produce a naked singularity.

Black holes that saturate the bound (1) are known as
extremal. More generally, extremal black holes are de-
fined as those with zero Hawking temperature. Extremal
black holes play a key role in many theoretical arguments
investigating the nature of classical and quantum gravity,
such as cosmic censorship [3] and the quantum nature of
black hole entropy [4]. They have near-horizon regions
that possess additional emergent symmetries [5] and may
be governed by a holographic duality [6] in the spirit of
AdS/CFT [7]. At least in parameter space, they are a
hair’s breath from being naked singularities, the existence
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FIG. 1. Gravitational waveforms from equatorial, quasi-
circular inspiral into ordinary and near-extremal black holes.
The black hole spins are a/M = 0.97 and a/M =1 — 1077,
respectively. We show the h4 component for a system viewed
face-on. The waveform begins when the particle crosses
r = 3.3M and ends when the particle reaches the ISCO; we do




Invariants of a perturbed black hole

Redshift invariant (Detweiler '08; Akcay, et. al. "15)

2009 Shift in the innermost stable circular orbit (Barack & Sago)

4= Periastron advance, mildly-eccentric orbit (Barack & Sago)

Geodetic spin-precession (Dolan, et al.)
+ Tidal eigenvalues (Dolan, et al.)

Octupolar invariants (Nolan, et al.)

¢ += Second order redshift invariant (Pound, et al.; Detweiler, et al. -
« see talks by A. Pound, A. Heffernan, H. Chen, J. Thompson)




(Classification: conservative and

dissipative ivariants

Conservative

Al

Dissipative

(tidal tensor)

(redshift)
Ay F;
(geodetic spin precession) (fluxes of radiation)
B, Eop, bio B3

(tidal tensor)

E111, E122, Bo11, B222
(octupoles)

Es11, Es22, B123
(octupoles)




Eixtracting information from self-

force calculations

Comparison with posmgMonian theory - talk by C. Evans, | qusl

J.Vines.

Comparison with Numerical Relativity - see talk by A.

Zimmerman.

Calibrate EOB - see talks by T. Damour; D. Bini, C. Kavanagh,

§ Hinderer | Steinhoil.
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Orbital

evolution

50t

* Once we have the self-force, we
need to use it to evolve orbits.

* “Geodesic” approximation vs.
self-consistent evolution.

—50L!
* Inclusion of spin effects.

# Talks by T. Osburn, P. Diener,
C. Galley, S. Isoyama, N. - 100, . . . :
—100 -50 0 50 100

Warburton, R. Fujita.




A lot done, more to do...

) ) %zz v.
Invariants for err spacetime

eccentric orbits

Gab = Gab + hgzb T h?zb

Second order perturbation theory



Second order conservative effects

Generalised redshift invariant for circular orbits
[Pound, Phys. Rev. D90, 084039]

| M
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Second order field equations

Dyvlh| =Uhy, + QRuavﬁhozB

Dy Pt = =D [1°]
Duu[hRQ] — _D;w [hSQ] T 52R,uu[hla hl]

52Ra5 [h h] — — —h'w/(Qh'u(a Byv haﬁ I h,uu aﬁ)
+ 1hW/ ahpv;p + 1h” Y (hpasw — hvasp)
— §hW;V(2hu(a;B) - haﬁ;u)




Challenges at

Second order

* Second order gravitational self-
force will require high accuracy
= Frequency domain.

~ First order metric perturbation ~ 1/ (r-ro) |




Challenges at

Second order

* Second order gravitational self-
force will require high accuracy
= Frequency domain.

* Spherical harmonic modes at
first order finite on world line =
mode-sum regularisation.

14}
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First order modes ~ | r-ro !l / (r-10)



Challenges at

Second order

* Second order gravitational self-
force will require high accuracy
= Frequency domain.

* Spherical harmonic modes at
first order finite on world line =
mode-sum regularisation.

+* Second order metric more
singular.

<. 40}

80r

601

201

Second order perturbation ~ 1/ (r-rp)?



Challenges at

Second order

* Second order gravitational self-
force will require high accuracy
= Frequency domain.

* Spherical harmonic modes at
first order finite on world line =
mode-sum regularisation.

+* Second order metric more
singular.

# Second order modes diverge
logarithmically.

151

Second order modes ~ log | r-1¢ |



Challenges at

Second order

* Second order gravitational self- ol
force will require high accuracy
= Frequency domain. 1o}

(2)
Im

* Spherical harmonic modes at
first order finite on world line =

mode-sum regularisation. M
Or 1

* Second order metric more 20 5 100 05 1o

Smgulal—‘- Second order modes ~ log | r-ry |

# Second order modes diverge
logarithmically.

* Avoid computing retarded field
on world line = effective source.



Towards second order self-force
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PHYSICAL REVIEW D 89, 104020 (2014)
Practical, covariant puncture for second-order self-force calculations

Adam Pound and Jeremy Miller

Mathematical Sciences, University of Southampton, Southampton SOI17 IBJ, United Kingdom
(Received 7 March 2014; published 13 May 2014)

Accurately modeling an extreme-mass-ratio inspiral requires knowledge of the second-order gravita-
tional self-force on the inspiraling small object. Recently, numerical puncture schemes have been
formulated to calculate this force, and their essential analytical ingredients have been derived from first
principles. However, the “puncture,” a local representation of the small object’s self-field, in each of these
schemes has been presented only in a local coordinate system centered on the small object, while a
numerical implementation will require the puncture in coordinates covering the entire numerical domain. In
this paper we provide an explicit covariant self-field as a local expansion in terms of Synge’s world
function. The self-field is written in the Lorenz gauge, in an arbitrary vacuum background, and in forms
suitable for both self-consistent and Gralla-Wald-type representations of the object’s trajectory. We
illustrate the local expansion’s utility by sketching the procedure of constructing from it a numerically
practical puncture in any chosen coordinate system.

DOI: 10.1103/PhysRevD.89.104020 PACS numbers: 04.20.-q, 04.25.-g, 04.25.Nx, 04.30.Db




Towards second order self-force
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Towards second order self-force

[ Mode-sum }[ Eff. source } Eff. source
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Second order effective source

D,
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1] _ _D,uy 1]
|+ 0" Ry [h, b
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Second order Ricel tensor

52Ra5 [hlret7 hlret] _
52Ra5 N R mode coupling

-+ 2(52Ra5
+ 5°Rup

et hlS] < mode coupling

:hlsa hls] <=3 mode decomposition (c.f. 15?)




Mode coupling

52RW ht hl 252 iom (13 7) _ZmQthfm(r, HA)

fm

52 zfm— Z D

i 0'm’
0 m”

! <1/ pll/ !/
00 m

fm

[hlz”ﬁ’m’ ; hli”é”m”]




Mode coupling: 5°R[A! 4!
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Mode decomposition: 5°R[h'> A1
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Mode decomposition: 5°R[h'> A1

d2R(A) for i=1

0.001 |-
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Towards second order self-force

[ Mode-sum }[ Eff. source } Eff. source
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