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Structure of talk

@ Why another method for self-force calculations?
@ Formulation of method in Kerr
@ Implementation for circular orbits in Schwarzschild

@ Going forward to Kerr
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Why another method for self-force calculations?

’ Method for obtaining h,3  frequency domain time domain ‘

direct:

Eﬂu(haﬁ) = Taﬁ v v
metric reconstruction:

Teuk(W) =T, V= hup N this talk

Reconstruction method is computationally cheaper, but so far only formulated and
implemented via frequency-domain decomposition.

Reasons to want to have a time-domain method for metric reconstruction:
@ Highly eccentric or unbound (incl. high-energy) orbits
@ Orbital evolution under the self-force

@ Test of f-domain calculations
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Review of metric reconstruction

vacuum spacetime

@ Let h,g be a vacuum perturbation of the Kerr metric, with 4, 19
associated Weyl scalars.

@ Find a “Hertz potential” & that satisfies

Teuks® = 0| and D;‘CD =1Y_s or E‘S‘CD = W |

@ Then the original perturbation can be reconstructed via

hap = Re (€a(aens)DP) + HESE + OMog + 6Ju.
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Review of metric reconstruction

vacuum spacetime

Two variants:

°
Teuk 2® =0| and |D*® =1y or L% =1y|
rec b « . rec
of = R,e (ea(aebﬂ)pa (D) , E of3 = 0
°
Teukyo® =0| and |D*® =1ty or L4 =1
as = Re (ea(aebﬁ)ﬁabd)) , n“hys = 0.
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Review of metric reconstruction
point-particle source

@ In presence of matter sources, the

procedure fails to yield a valid solution h'gﬁ

even in vacuum away from sources
[LB & Ori 2001; Price & Whiting 2007] | @ hagpor=-===-==

@ Reconstruction for bound orbits, with Ori’s "half-string” solutions
string-like gauge singularities [Ori 2003]

@ “No-string” reconstruction with gauge =)

discontinuity on a sphere [Keidl,

Friedman etal 2007-12; vdMeent 2015-] @

@ Self-force from a reconstructed metric
i > gauge ho h+
[Pound, Merlin & LB (2014)] ¢ op” op

discontinuity

@ Determination of Myg + 6 Jug
[Merlin etal 2016; vdMeent 2017]

Friedman's “no-string” solution

V.
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New method: metric reconstruction in the t domain

Basic idea: Obtain = by solving the appropriate Teukolsky equation in 141D, with
suitable boundary conditions at infinity and on the horizon, and with suitable junction
conditions along the particle's worldline. From it obtain the “no-string” perturbation via

hfﬁ = Re (ea(aebB)Dabq)i) + 6M§5 aF 5-’3‘:5

or an {-by-¢ application thereof.

Need 3 things:
@ 1+1D decomposition of the Teukolsky equation
@ Boundary conditions for 141D solutions

© Junction conditions along the particle’s worldline
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14+1D decomposition of the Teukolsky equation

Decompose into spin-weighted spherical harmonics (even in Kerr):

=) 4
OF = (rA )Y D Gaim(t, 1) Yem(0, 7).

£=2 m=—¢

Substitution into Teukolsky's master equation (in vacuum) gives

3 Yem(0,3) [ﬂqsﬁ;m — %sin? 0 (¢%5,,) u + 2ias cos 0 (%)) = 0.
£m
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14+1D decomposition of the Teukolsky equation

Decompose into spin-weighted spherical harmonics (even in Kerr):

=) 4
OF = (rA )Y D Gaim(t, 1) Yem(0, 7).

£=2 m=—¢

Substitution into Teukolsky's master equation (in vacuum) gives
Z Yem(0 [Dqﬁsem a%sin? 0 (¢3,) 0 + 2ias cos 0 (¢5m).e] =0

After reexpanding in sYyn we get, for each £,

O + U(6hy + V(N + W(N)6" + K(r) [ G ol + T(6™,02)] =0,

with the /-mode coupling term

T—_2 (C++¢>“2+ Cf e+1+ Ce¢>énl+C£_¢eu2> + Dias (C+¢z+1+cz;¢’z;1)'
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Boundary conditions for the fields ¢, (v, v)
behavior at r > M

@ time-dependent modes:

physical: ¢T ~ e iwu < bounded,

nonphysical: ¢* ~ r*e™“Y < blows up for ORG.

@ static modes:

physical: ¢T ~ r~ ™ < bounded,

nonphysical:  ¢* ~ 51 < blows up.

In an ORG reconstruction, all nonphysical modes blow up at infinity
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Boundary conditions for the fields ¢, (v, v)

behavior near the event horizon

@ time-dependent modes:
physical: ¢~ ~ e /@, — bounded,
nonphysical: ¢~ ~ ASe WdeT2imur .y blows up for IRG.

@ static modes:
physical: ¢~ ~ const < bounded,
nonphysical: ¢~ ~ A® — blows up for IRG.

In an IRG reconstruction, all nonphysical modes blow up on the horizon
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Boundary conditions for the fields ¢, (v, v)

behavior near the event horizon

@ time-dependent modes:
physical: ¢~ ~ e /@, — bounded,
nonphysical: ¢~ ~ ASe WdeT2imur .y blows up for IRG.

@ static modes:
physical: ¢~ ~ const < bounded,
nonphysical: ¢~ ~ A® — blows up for IRG.

In an IRG reconstruction, all nonphysical modes blow up on the horizon

This motivates a “mixed-gauge” approach where hzﬂ is reconstructed in
ORG while h_ 4 is reconstructed in IRG. (We won't implement it here.)
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Junction conditions on the particle’s worldline

@ Radial inversion relations decompose into sYz, modes without any mode coupling,
even in Kerr! E.g., for IRG:

8rA°D} (8°5/r) = (~1)" U1

where
D i=A"1 ((r2 + 32)8V — ima) .

@ Angular relations don’t have this nice feature, except for a = 0 where they become
very simple (essentially qbf ~pE). See
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Junction conditions on the particle’s worldline

@ Radial inversion relations decompose into sYz, modes without any mode coupling,
even in Kerr! E.g., for IRG:

8rA°D} (8°5/r) = (~1)" U1

where
D i=A"1 ((r2 + 32)8V — ima) .

@ Angular relations don’t have this nice feature, except for a = 0 where they become
very simple (essentially qbff ~pE). See

@ The jumps across the worldline in ¢ and its v derivatives thus obey

Y Fa() [00dem] = [Po.t.—m]

where [1/_10,47,,7,} can be inferred directly from the source of the Teukolsky equation.
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Junction conditions on the particle’s worldline

@ [0)2°¢] can be expressed in terms of [¢] and [¢,,] and their 7 derivatives along
the orbit, via a repeated application of the vacuum Teukolsky equation.

@ We obtain a coupled set of ODEs for [¢] and [¢,,]:

3 n n
Z (an(T)d [¢] o bn(T)%) + 7 terms = [15275,_,,,]

n
pard dr

> (e ZE 4 T2 4 2 terms = (G-,

n=0

@ These should be solved with suitable initial or periodicity conditions.

@ Once [¢] and [¢,,] are known, the jumps in all higher (u, v or mixed) derivatives
are easily obtained using [¢] = 0y [¢,u] + Vo [¢,v] and the Teukolsky equation.
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Implementation for circular orbits in Schwarzschild
1. Field equation and junction conditions

@ Specializing to Schwarzschild and IRG:

B + UL + V()6 + W(r)9' =0,

with

U(r):zr—l\;,, V(r):—2—rf, W(r):%(@#—i—"j).

@ Specializing further to circular orbits, jump equations become algebraic:

ar o] +belon] = [d2e—m],
gl +delon] = [0tae-m],

so can be solved analytically.
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Implementation for circular orbits in Schwarzschild

1. Field equation and junction conditions

@ Even in this simple case, the jumps are complicated...
ein?] = (ds [Fae,m] — bx [0vh20,-m]),

Al
0,07 A (a5 [0, m] — o5 [Pot,-m]),

where 1
A= [AZ(A +2)y 4 (12mMQ)2] 7

and, e.g., cx = Zizo(—imQ)”c,, with

@ = rf(l—y)AA+2),

a = forf [A()\ £5) —2(A\2 42X — 6)y — 2(4\ + 17)y% + 12y3] :
o = 218 [3,\ + (15 — 7TA)y + 2(A — 23)y2 + 24y |

= 2hrg(A+22y),

a = 16M:g.

Here A\ := (L +2)(¢—1), fh:=1—2M/r, y:=M/n.
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Implementation for circular orbits in Schwarzschild
2. Numerical method

@ Teukolsky equation discretized on a
141 mesh in uv coords

% @ Finite-difference scheme is 2nd-order
convergent [local error is O(h*)]

@ FD scheme at near-particle points
’ incorporates jump information

O
2 9.9.0,
EERESGS iz
’0 @’ Start with zero intial data on u = uy
”’0’96’ Z?Sciiv = v vt for junk radiation to
. ‘0 \\//w p pate.
%%
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Implementation for circular orbits in Schwarzschild
3. Results and tests

0.014} ) (I, m)=(2, 0)
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Implementation for circular orbits in Schwarzschild

3. Results and tests
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Implementation for circular orbits in Schwarzschild
3. Results and tests
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Implementation for circular orbits in Schwarzschild
3. Results and tests
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Implementation for circular orbits in Schwarzschild
3. Results and tests
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Implementation for circular orbits in Schwarzschild
3. Results and tests
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Going forward (1/4)

Extension to eccentric or unbound orbits

Main challenge is to solve 4th-order ODEs that determine the jumps of ¢ across
the orbit.

- For periodic orbits: can decompose into harmonics of orbital frequencies

- For evolving bound orbits: can impose approximate periodic initial
conditions at initial point

- For scatter orbits: can impose initial conditions at infinity; need to find a
way to eliminate nonphysical unstable solutions.
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Going forward (2/4)

Extension to Kerr
Need to incorporate mode coupling in both field & jump equations.
- Preliminary results show that's easily done in vacuum.

- In particle case, may need to deal with coupling at the level of the
mode-sum regularization formula
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Going forward (3/4)

Exploring the mixed-gauge approach

- Our IRG implementation seems to “automatically” select the physical
(retarded) solution. Need to understand why and whether that's always
guaranteed.

- A mixed-gauge approach would have the advantage that a globally bounded
solution is automatically the physical one.

- To set up a the mixed-gauge calculation, need (1) a formulation of the
self-force from a mixed-gauge perturbation (easy), and (2) a method for
determining the jump condition (hard!)
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Going forward (4/4)

Improving the numerical method

Method could be directly implemented on existing platforms (e.g., Diener’s or
Thornburg'’s), to include

Mesh refinement

Hyperboloidal slicing

Compactification
- Parallelization

Method is also amenable to finite-element discretization a la Canizares &
Sopuerta.
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