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Why another method for self-force calculations?

Formulation of method in Kerr

Implementation for circular orbits in Schwarzschild

Going forward to Kerr
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Why another method for self-force calculations?

Method for obtaining hαβ frequency domain time domain

direct:
Eµν(hαβ) = Tαβ X X

metric reconstruction:
Teuk(Ψ) = T , Ψ⇒ hαβ X this talk

Reconstruction method is computationally cheaper, but so far only formulated and
implemented via frequency-domain decomposition.

Reasons to want to have a time-domain method for metric reconstruction:

Highly eccentric or unbound (incl. high-energy) orbits

Orbital evolution under the self-force

Test of f-domain calculations
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Review of metric reconstruction
vacuum spacetime

Let hαβ be a vacuum perturbation of the Kerr metric, with ψ4, ψ0

associated Weyl scalars.

Find a “Hertz potential” Φ that satisfies

TeuksΦ = 0 and D4
s Φ = ψ−s or L4

sΦ = ψs .

Then the original perturbation can be reconstructed via

hαβ = Re
(
ea(αebβ)DabΦ

)
+ hgaugeαβ + δMαβ + δJαβ.
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Review of metric reconstruction
vacuum spacetime

Two variants:

Ingoing Radiation Gauge (IRG)

Teuk−2Φ = 0 and D4Φ = ψ0 or L4Φ = ψ4 .

hrecαβ = Re
(
ea(αebβ)DabΦ

)
, `αhrecαβ = 0.

Ongoing Radiation Gauge (ORG)

Teuk+2Φ = 0 and D̃4Φ = ψ4 or L̃4Φ = ψ0 .

hrecαβ = Re
(
ea(αebβ)D̃abΦ

)
, nαhrecαβ = 0.
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Review of metric reconstruction
point-particle source

In presence of matter sources, the
procedure fails to yield a valid solution
even in vacuum away from sources
[LB & Ori 2001; Price & Whiting 2007]

Reconstruction for bound orbits, with
string-like gauge singularities [Ori 2003]

“No-string” reconstruction with gauge
discontinuity on a sphere [Keidl,

Friedman etal 2007-12; vdMeent 2015–]

Self-force from a reconstructed metric
[Pound, Merlin & LB (2014)]

Determination of δMαβ + δJαβ
[Merlin etal 2016; vdMeent 2017]

h
+

h


Ori’s “half-string” solutions

r = rp(t)

h
+h

gauge 
discontinuity

Friedman’s “no-string” solution
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New method: metric reconstruction in the t domain

Basic idea: Obtain Φ± by solving the appropriate Teukolsky equation in 1+1D, with
suitable boundary conditions at infinity and on the horizon, and with suitable junction
conditions along the particle’s worldline. From it obtain the “no-string” perturbation via

h±αβ = Re
(
ea(αebβ)DabΦ±

)
+ δM±αβ + δJ±αβ

or an `-by-` application thereof.

Need 3 things:

1 1+1D decomposition of the Teukolsky equation

2 Boundary conditions for 1+1D solutions

3 Junction conditions along the particle’s worldline
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1+1D decomposition of the Teukolsky equation

Decompose into spin-weighted spherical harmonics (even in Kerr):

Φ±s = (r∆s)−1
∞∑
`=2

∑̀
m=−`

φ±s`m(t, r) sY`m(θ, ϕ̃).

Substitution into Teukolsky’s master equation (in vacuum) gives∑
`m

sY`m(θ, ϕ̃)
[
�̃φ±s`m − a2 sin2 θ (φ±s`m),tt + 2ias cos θ (φ±s`m),t

]
= 0.

After reexpanding in sY`m we get, for each `,

φ`,uv + U(r)φ`,u + V (r)φ`,v + W (r)φ` + K(r)
[
a2C `0 φ

`
,tt + I(φ`±1, φ`±2)

]
= 0,

with the `-mode coupling term

I = −a2
(
C `++φ

`+2
,tt + C `+φ

`+1
,tt + C `−φ

`−1
,tt + C `−−φ

`−2
,tt

)
+ 2ias

(
c`+φ

`+1
,t + c`−φ

`−1
,t

)
.
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Boundary conditions for the fields φ±s`m(v , u)
behavior at r � M

time-dependent modes:

physical: φ+ ∼ e−iωu ↪→ bounded,

nonphysical: φ+ ∼ r2se−iωv ↪→ blows up for ORG.

static modes:

physical: φ+ ∼ r−`+s ↪→ bounded,

nonphysical: φ+ ∼ r `+s+1 ↪→ blows up.

In an ORG reconstruction, all nonphysical modes blow up at infinity
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Boundary conditions for the fields φ±s`m(v , u)
behavior near the event horizon

time-dependent modes:

physical: φ− ∼ e−iωv , ↪→ bounded,

nonphysical: φ− ∼ ∆se−iωue−2imΩHr∗ ↪→ blows up for IRG.

static modes:

physical: φ− ∼ const ↪→ bounded,

nonphysical: φ− ∼ ∆s ↪→ blows up for IRG.

In an IRG reconstruction, all nonphysical modes blow up on the horizon

This motivates a “mixed-gauge” approach where h+
αβ is reconstructed in

ORG while h−αβ is reconstructed in IRG. (We won’t implement it here.)
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Junction conditions on the particle’s worldline

Radial inversion relations decompose into sY`m modes without any mode coupling,
even in Kerr! E.g., for IRG:

8r∆2D4
l

(
∆2φ̄±`m/r

)
= (−1)mψ±0,`,−m ,

where
Dl := ∆−1

(
(r 2 + a2)∂v − ima

)
.

Angular relations don’t have this nice feature, except for a = 0 where they become
very simple (essentially φ±,t ∼ ψ±0 ). See Lousto & Whiting 2002.

The jumps across the worldline in φ and its v derivatives thus obey

4∑
n=0

Fn(v) [∂n
vφ`m] =

[
ψ̄0,`,−m

]
,

where
[
ψ̄0,`,−m

]
can be inferred directly from the source of the Teukolsky equation.
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Junction conditions on the particle’s worldline

[
∂n≥2
v φ

]
can be expressed in terms of [φ] and [φ,v ] and their τ derivatives along

the orbit, via a repeated application of the vacuum Teukolsky equation.

We obtain a coupled set of ODEs for [φ] and [φ,v ]:

3∑
n=0

(
an(τ)

dn [φ]

dτ n
+ bn(τ)

dn [φ,v ]

dτ n

)
+ I terms =

[
ψ̄2,`,−m

]
4∑

n=0

(
cn(τ)

dn [φ]

dτ n
+ dn(τ)

dn [φ,v ]

dτ n

)
+ I terms =

[
(ψ̄2,`,−m),v

]

These should be solved with suitable initial or periodicity conditions.

Once [φ] and [φ,v ] are known, the jumps in all higher (u, v or mixed) derivatives

are easily obtained using ˙[φ] = u̇p [φ,u] + v̇p [φ,v ] and the Teukolsky equation.
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Implementation for circular orbits in Schwarzschild
1. Field equation and junction conditions

Specializing to Schwarzschild and IRG:

φ`,uv + U(r)φ`,u + V (r)φ`,v + W (r)φ` = 0,

with

U(r) =
2M

r 2
, V (r) = −2f

r
, W (r) =

f

4

(
(`+ 2)(`− 1)

r 2
− 2M

r 3

)
.

Specializing further to circular orbits, jump equations become algebraic:

aΣ [φ] + bΣ [φ,v ] =
[
ψ̄2,`,−m

]
,

cΣ [φ] + dΣ [φ,v ] =
[
∂v ψ̄2,`,−m

]
,

so can be solved analytically.
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Implementation for circular orbits in Schwarzschild
1. Field equation and junction conditions

Even in this simple case, the jumps are complicated...[
φIRG
`m

]
= ∆̃−1 (dΣ

[
ψ̄2,`,−m

]
− bΣ

[
∂v ψ̄2,`,−m

])
,[

∂vφ
IRG
`m

]
= ∆̃−1 (aΣ

[
∂v ψ̄2,`,−m

]
− cΣ

[
ψ̄2,`,−m

])
,

where

∆̃ =
1

4
f 4
0 r

8
0

[
λ2(λ+ 2)2 + (12mMΩ)2

]
,

and, e.g., cΣ =
∑4

n=0(−imΩ)ncn with

c0 = r 3
0 f

2
0 (1− y)λ(λ+ 2),

c1 = f0r
4
0

[
λ(λ+ 5)− 2(λ2 + 2λ− 6)y − 2(4λ+ 17)y 2 + 12y 3

]
,

c2 = 2r 5
0

[
3λ+ (15− 7λ)y + 2(λ− 23)y 2 + 24y 3

]
,

c3 = 2f0r
6
0 (λ+ 22y),

c4 = 16Mr 6
0 .

Here λ := (`+ 2)(`− 1), f0 := 1− 2M/r0, y := M/r0.
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Implementation for circular orbits in Schwarzschild
2. Numerical method

v = v
0 u =

 u 0

vu

h
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V

V

V

V

V

V

V

V

V

V

Teukolsky equation discretized on a
1+1 mesh in uv coords

Finite-difference scheme is 2nd-order
convergent [local error is O(h4)]

FD scheme at near-particle points
incorporates jump information

Start with zero initial data on u = u0

and v = v0; wait for junk radiation to
dissipate.
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Implementation for circular orbits in Schwarzschild
3. Results and tests
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Implementation for circular orbits in Schwarzschild
3. Results and tests
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Implementation for circular orbits in Schwarzschild
3. Results and tests
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Implementation for circular orbits in Schwarzschild
3. Results and tests
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Implementation for circular orbits in Schwarzschild
3. Results and tests

(l, m) = (2, 1)
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Implementation for circular orbits in Schwarzschild
3. Results and tests
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Going forward (1/4)

Extension to eccentric or unbound orbits

Main challenge is to solve 4th-order ODEs that determine the jumps of φ across
the orbit.

- For periodic orbits: can decompose into harmonics of orbital frequencies

- For evolving bound orbits: can impose approximate periodic initial
conditions at initial point

- For scatter orbits: can impose initial conditions at infinity; need to find a
way to eliminate nonphysical unstable solutions.
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Going forward (2/4)

Extension to Kerr

Need to incorporate mode coupling in both field & jump equations.

- Preliminary results show that’s easily done in vacuum.

- In particle case, may need to deal with coupling at the level of the
mode-sum regularization formula
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Going forward (3/4)

Exploring the mixed-gauge approach

- Our IRG implementation seems to “automatically” select the physical
(retarded) solution. Need to understand why and whether that’s always
guaranteed.

- A mixed-gauge approach would have the advantage that a globally bounded
solution is automatically the physical one.

- To set up a the mixed-gauge calculation, need (1) a formulation of the
self-force from a mixed-gauge perturbation (easy), and (2) a method for
determining the jump condition (hard!)
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Going forward (4/4)

Improving the numerical method

Method could be directly implemented on existing platforms (e.g., Diener’s or
Thornburg’s), to include

- Mesh refinement

- Hyperboloidal slicing

- Compactification

- Parallelization

Method is also amenable to finite-element discretization a la Canizares &
Sopuerta.
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