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The problem.

We wish to determine the self-forced motion and field (e.g. energy
and angular momentum fluxes) of a particle with scalar charge

�ψret = −4πq

∫
δ(4)(x− z(τ)) dτ.

2 general approaches:

I Compute enough “geodesic”-based self-forces and then use
these to drive the motion of the particle. (Post-processing,
fast, accurate self-forces, relies on slow orbit evolution)

I Compute the “true” self-force while simultaneously driving the
motion. (Slow and expensive, less accurate self-forces)



Effective source approach.

... is a general approach to self-force and self-consistent orbital
evolution that doesn’t use any delta functions.

Key ideas

I Compute a regular field, ψR, such that the self-force is

Fα = ∇αψR|x=z,

where ψR = ψret − ψS, and ψS can be approximated via local
expansions: ψS = ψ̃S +O(εn).

I The effective source, S, for the field equation for ψR is regular at
the particle location.

�ψR = �ψret −�ψ̃S = S(x|z, u)

where � ψ̃S = −4πq
∫
δ(4)(x− z(τ)) dτ − S.



Self-consistent vs. geodesic evolutions.

I One main goal is to compare our self-consistent evolutions
with Niels Warburton’s geodesic evolutions.

I First attempt: 3+1 multi-patch finite difference code with a
C0 effective source.

I 3+1 accuracy limited by the non-smoothness of the source
leading to high frequency noise with 2nd order convergent
amplitude.

I Self-consistent evolutions agreed beautifully with geodesic
evolutions within the errors (dominated by the noise).

I Next attempt: 3+1 multi-patch finite difference code with a
C2 effective source.

I Geodesic evolution agreed with the C0 evolutions and the
frequency domain result with the noise reduced by more than
an order of magnitude.

I However, we found differences between C2 and C0 results as
soon as the back-reaction was turned on.



Discontinuous Galerkin method.
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I Split the domain into
N nth order
elements.

I Each element
contains n+ 1 nodes.

I u(t, x) ≈∑n
i=0 ũ(t, xi)Pi(x)
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I The numerical approximation is double valued at all element
boundaries.

I Derivatives are approximated by multiplying the state vector
in each element by a derivative matrix.

I Neighboring elements are glued together by numerical fluxes.



Discontinuous Galerkin method.

I Numerical fluxes can be constructed in many different ways in
order to maintain numerical stability and to guarantee that
the jumps in the solution at the element boundaries converge
to zero.

I We use fluxes based on a characteristic decomposition of the
wave equation.

The convergence properties of the DG method for smooth
solutions are

I Exponential with the order n (with N kept fixed).

I polynomial with the element size 1/N (with n kept fixed).

As the DG scheme has discontinuities built in at the element
boundaries, we retain these convergence properties even when the
solution itself is non-smooth IF and only if, the non-smooth
features can be placed at element boundaries.
(Hesthaven & Warburton, 2007)



Code description.

The code is 1+1 dimensional based on the spherical harmonic
decomposition of the scalar wave equation in the Schwarzschild
spacetime in tortoise coordinates r∗ = r + 2M log(r/(2M)− 1)
with a spherically harmonic decomposed effective source.

−∂
2ψ`m

∂t2
+
∂2ψ`m

∂r2
∗
− V`(r)ψ`m = Seff

`m.

As r∗ ∈ [−∞,∞] we split the domain into three regions. In the
inner (r∗ ∈ [−∞, T1]) and outer (r∗ ∈ [T2,∞]) regions we
introduce new coordinates (τ, ρ) used in Bernuzzi, Nagar &
Zenginoğlu (2011).

t = τ + h(ρ)

r∗ = ρ/Ω(ρ)

where h(ρ) and Ω(ρ) are chosen suitably (hyperboloidal layers) in
each region to make the inner boundary (ρmin) coincide with the
horizon H and the outer boundary (ρmax) coincide with I +.



Code description.

In the middle region (r∗ ∈ [T1, T2]) we introduce a time dependent
coordinate transformation (Field, Hesthaven & Lau, 2009)

t = λ

r∗ = T1 +
rp∗ − T1

ξp − T1
(ξ − T1) +

(T2 − rp∗)(ξp − T1)− (rp∗ − T1)(T2 − ξp)
(ξp − T1)(T2 − ξp)(T2 − T1)

(ξ − T1)(ξ − ξp)

where rp∗ is the time-dependent particle location. This satisfies r∗(λ, T1) = T1,
r∗(λ, ξ

p) = rp∗ , r∗(λ, T2) = T2.
In addition we use the world tube approach so that we evolve
ψR
`m = ψret

`m − ψS
`m in the region r∗ ∈ [W1,W2] (where typically W1 > T1 and

W2 < T2), while elsewhere we evolve ψret
`m.

The values of T1, W1, W2 and T2 is of course chosen to coincide with element
boundaries.

H T1 T2(λ, ξ)(τ, ρ) I +(τ, ρ)

W1 W2
ρmaxρmin

ψret
ℓm ψR

ℓm ψret
ℓm



Code issues at last Capra meeting.

I Effective source with acceleration terms had been added.
Code was working for constant accelerated circular orbit, but
not for accelerated eccentric orbits.

I We appeared to lose mode sum convergence for non-constant
accelerated circular orbits.

I Had done a few experiments with back reaction turned on but
saw instabilities developing.

I Marathon debugging session took place in Dublin in January.
I Found that the effective source was actually implemented

correctly. The error was in the expressions for the
time-derivatives of the acceleration (in the case of eccentric
orbits).

I Discontinuity of effective source during smooth turn on causes
non-physical slowly decaying (related to Joost solutions?)
modes.

I Implemented the ability to read in correct initial data from
Niels’ frequency domain code.



p = 8, e = 0.1, dt/dχ = 2(dt/dχ)geo
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p = 8, e = 0.1, dt/dχ = 2(dt/dχ)geo
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p = 6.7862, e = 0.0, A = 0.05, σ = 1.8

t1 = 30.1867
t2 = 55.5379
t3 = 55.5379
t4 = 80.7708
t5 = 101.779
t6 = 106.003

Evolve up to ` = 65.
DG order up to 96.
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p = 6.7862, e = 0.0, A = 0.05, σ = 1.8
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p = 6.7862, e = 0.0, A = 0.05, σ = 1.8
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p = 9.9, e = 0.1, q = 1/8

Only four-acceleration passed in to the effective source!!!!
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Conclusions and Outlook.

I The effective source for non-geodesic orbits is working and
can reproduce frequency domain results for accelerated
eccentric orbits with very good accuracy.

I For the case of a particle on a circular orbit experiencing a
short acceleration phase, we maintain mode sum convergence
and see a series of light crossings followed by a t−3 tail decay.

I Self-consistent evolutions goes unstable. Very fast if
derivatives of the acceleration are passed into the effective
source.

I Suspect it is a feedback instability triggered by noise in the
acceleration and its derivatives but are still investigating other
possible bugs in the code.

I May be able to reduce noise by using numerical derivatives of
Ė and L̇ instead of ȧ and ä

I May be able to use Anna’s regularization parameters to
improve mode sum convergence and decrease the needed
number of `-modes.



Conclusions and Outlook.

I The DG code seem to be a good fit for Leor’s proposal of
evolving the Hertz potential in the time domain. Will need to
discuss more during Capra.

I Indeed it seems that a lot can be learned from Field,
Hesthaven and Lau’s approach to evolving RWZ with a
δ-function source.


