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Talk outline

• Current status of LISA

• Estimation of rates of EMRI events observed by LISA

• Implications for science using LISA EMRIs

- astrophysics

- fundamental physics

- cosmology

• Waveform requirements for LISA data analysis.
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LISA - Current Status
• LISA originally a joint ESA/

NASA project.

• NASA funding shortfall 
prompted their withdrawal in 
2011.

• ESA only mission, NGO, not 
selected for L1 in 2011.

• ESA selected “The Gravitational 
Universe” as the science theme 
to be addressed by the L3 
mission, to launch in 2034.

• The Gravitational Universe 
proposed gravitational wave 
detection from space.



LISA - Current Status
• 2016 was a good year for gravitational waves!

• On February 11th, the LSC announced the first direct detection of 
gravitational waves by manmade detectors, a binary black hole 
system GW150914.

properties of space-time in the strong-field, high-velocity
regime and confirm predictions of general relativity for the
nonlinear dynamics of highly disturbed black holes.

II. OBSERVATION

On September 14, 2015 at 09:50:45 UTC, the LIGO
Hanford, WA, and Livingston, LA, observatories detected

the coincident signal GW150914 shown in Fig. 1. The initial
detection was made by low-latency searches for generic
gravitational-wave transients [41] and was reported within
three minutes of data acquisition [43]. Subsequently,
matched-filter analyses that use relativistic models of com-
pact binary waveforms [44] recovered GW150914 as the
most significant event from each detector for the observa-
tions reported here. Occurring within the 10-ms intersite

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right
column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35–350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject
filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right: L1 strain.
GW150914 arrived first at L1 and 6.9þ0.5

−0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in time by this
amount and inverted (to account for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto each
detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible
regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black hole template waveforms
[39]. The other (light gray) does not use an astrophysical model, but instead calculates the strain signal as a linear combination of
sine-Gaussian wavelets [40,41]. These reconstructions have a 94% overlap, as shown in [39]. Third row: Residuals after subtracting the
filtered numerical relativity waveform from the filtered detector time series. Bottom row:A time-frequency representation [42] of the
strain data, showing the signal frequency increasing over time.
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LISA - Current Status
• 2016 was a good year for gravitational waves!

• In June, the first results from LISA Pathfinder were announced, 
showing performance exceeding LISA requirements.

exchanging a laser beam over a few million kilometres.
To achieve the full science objectives of LISA, the ASD of
spurious random accelerations of the TMs must be limited
to S1=2g ðfÞ ≤ 3 fm s−2=

ffiffiffiffiffiffi
Hz

p
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðf=8 mHzÞ4

p
within

the frequency band of the detector, 0.1 mHz ≤ f ≤ 1 Hz.
The f2 relaxation for f ≥ 8 mHz arises because at those
frequencies the noise is expected to be dominated by white
interferometer displacement noise that, when converted to
equivalent acceleration, scales like f2. The requirement
should be given in terms of the differential acceleration,
Δg, between the two test masses. However, as the two
spacecraft are separated by a large distance, force fluctua-
tions around each TM are assumed to be incoherent and
S1=2Δg ¼

ffiffiffi
2

p
S1=2g .

At frequencies below 1 Hz, there is currently no realistic
possibility to reach such a level of free fall in a ground
based laboratory. The main problems are the large accel-
eration of the laboratory relative to a local inertial frame
and low-frequency terrestrial gravitational noise. This
pushes low-frequency GW detectors to space but also
prevents an end-to-end experimental demonstration of
the required free-fall performance in a terrestrial laboratory,
leading to the need for the LISA Pathfinder mission, whose
requirements for the ASD of Δg have been set at S1=2Δg ðfÞ ≤

30 fm s−2=
ffiffiffiffiffiffi
Hz

p
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðf=3 mHzÞ4

p
within the fre-

quency band 1 mHz ≤ f ≤ 30 Hz. Note that for LPF the
cross-over frequency to the f2 branch (3 mHz), corresponds
to the value used in the earliest LISA concept [4], while the
change to 8 mHz results from the latest studies [2]. This
difference has no practical impact on thework presented here.

A. The instrument

The core instrument of LPF [5], consists of two quasi-
cubic test masses, of size ð46.000% 0.005Þ mm and mass
M ¼ ð1.928% 0.001Þ kg, formed from a high-purity gold-
platinum alloy. During science operations, these masses are
in free fall inside a single spacecraft with their centers
separated by a nominal distance of ð376.00% 0.05Þ mm
along a line that we take as the x axis (see Fig. 2 and
Ref. [6]). Each TM is contained within an electrode housing
[7], which serves as an electrostatic shield in addition to a
6 degree-of-freedom sensor and electrostatic force actuator,
with gaps around the mechanically and electrically isolated
TM of 2.9–4 mm on the different axes. Charge accumulated
by the TMs due to cosmic rays is removed by a UV light
discharge system [8].
DC and slowly varying electrostatic forces are applied

with dedicated audio frequency voltages between 60 and

FIG. 1. Gray: ASD of Δg, S1=2Δg ðfÞ, measured for 6.5 days starting 127 days after launch. The ASD is the result of averaging 26
periodograms of 40 000 s each, which results in a relative error (1σ) of 10% in S1=2Δg . The effective spectral resolution, set by the spectral
window, is Δf ≃%50 μHz. The absolute calibration of the measurement is better than 5%. Red: ASD of the same time series after
correction for the centrifugal force (visible at the lowest frequencies). Light blue: ASD after correction for the pickup of spacecraft
motion by the interferometer (IFO), visible in the 20–200 mHz range. Dashed smooth black line: SΔgðfÞ ¼ S0 þ SIFOð2πfÞ4 with

S1=20 ¼ ð5.57% 0.04Þ fm s−2=
ffiffiffiffiffiffi
Hz

p
and S1=2IFO ¼ ð34.8% 0.3Þ fm=

ffiffiffiffiffiffi
Hz

p
. Note that the level of S0 has decreased further in subsequent

measurements, as quoted in the abstract and shown in Fig. 3. Shaded areas: LISA and LISA Pathfinder requirements for Δg. The LISA
single test-mass acceleration requirement [2] has been multiplied by

ffiffiffi
2

p
to be presented here as a differential acceleration.
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LISA - Current Status
• These results provided 

momentum behind gravitational 
waves which prompted ESA to 
issue a call for mission proposals 
in October 2016.

• Call closed mid-January 2017.

• The eLISA Consortium 
submitted a proposal for “LISA”, 
which was the only serious 
proposal and has now been 
accepted.

• NASA involved again, now as a 
junior partner, contributing ~
$350M.



LISA - Current Status
• Proposal structured around eight Science Objectives for the 

mission, each of which had several associated Science 
Investigations that would realise those objectives. Some of the 
Science Investigations imposed Observational Requirements 
with associated Mission Requirements for LISA performance.

• The first four Science Objectives were:

- SO1: Study the formation and evolution of compact 
binary stars in the Milky Way Galaxy  

- SO2: Trace the origin, growth and merger history of 
massive black holes across cosmic ages  

- SO3: Probe the dynamics of dense nuclear clusters using 
EMRIs  

- SO4: Understand the astrophysics of stellar origin black 
holes 



LISA - Current Status

• The other four Science Objectives were:

- SO5: Explore the fundamental nature of gravity and black 
holes  

- SO6: Probe the rate of expansion of the Universe  

- SO7: Understand stochastic GW backgrounds and their 
implications for the early Universe and TeV-scale particle 
physics  

- SO8: Search for GW bursts and unforeseen sources 



LISA - Current Status

• EMRIs/IMRIs appear in SO2, SO3, SO5 and SO6, in the Science 
Investigations

- SI2.4 Test the existence of Intermediate Mass Black Hole 
Binaries (IMBHBs) (sets MR2.4b);
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LISA - Current Status
• EMRIs/IMRIs appear in SO2, SO3, SO5 and SO6, in the Science 

Investigations

- SI3.1 Study the immediate environment of Milky Way like 
MBHs at low redshift;
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LISA - Current Status
• EMRIs/IMRIs appear in SO2, SO3, SO5 and SO6, in the Science 

Investigations

- SI5.2 Use EMRIs to explore the multipolar structure of 
MBHs;

- SI5.4 Test the propagation properties of GWs; 

- SI5.5 Test the presence of massive fields around massive 
black holes with masses > 103 M⊙
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LISA - Current Status
• EMRIs/IMRIs appear in SO2, SO3, SO5 and SO6, in the Science 

Investigations

- SI6.1: Measure the dimensionless Hubble parameter by 
means of GW observations only. 

• OR2.4b and OR3.1 set unique mission requirements. All others are 
enabled by these mission requirements or mission requirements from 
other science investigations.
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LISA - Current Status
• Mission requirements met by a LISA-like detector with the following 

characteristics

- 3 satellites in an Earth-trailing heliocentric orbit, 50-65 Mkm from 
the Earth; satellites 2.5 Mkm apart;

- 6 laser links (2 per arm) - allows construction of two independent 
data streams;

- 4 year nominal mission lifetime, but consumables and orbital 
stability should permit 10 years of operation;

- 30cm diameter telescopes, 2W laser power;

- gravitational reference sensor performance equal to that achieved 
in LISA Pathfinder.

- This is the new LISA baseline design, but will be optimised during 
the phase A design study which will begin soon.



Estimating 
EMRI event 

rates



EMRIs - Event Rates
• To estimate EMRI event rates need several ingredients

- Mass function of black holes: 
for                                       the 
BH mass function is not well 
constrained observationally.
- Traditionally have assumed a  

flat distribution 

- Uncertainty in slope +/-0.3. 
Models for MBH mergers 
favour slopes close to -0.3.

104M� . M . 107M�

dN

d lnM
= 0.002 Mpc�3



EMRIs - Event Rates

• Consider two cases

- a numerically 
simulated population, 
evolved consistently 
from pop III seeds: 
slope ~ -0.3 
(Barausse12) 

- a pessimistic analytic 
model: slope = 0.3 
(Gair10)



EMRIs - Event Rates
- Spin distribution of black holes: no observational constraints. 

Self-consistent model predicts high spins for all MBHs. Given 
uncertainties, consider three spin distributions:
- a98: self-consistent model;
- a0: all black holes have spin a = 0; 

- aflat: flat distribution in range [0, 0.98].



EMRIs - Event Rates
• To estimate EMRI event rates need several ingredients

- EMRI rate per galaxy numerical simulations suggest rate of 
black hole mergers (Hopman 2009, Amaro-Seoane & Preto 2011) 

- But cannot have such a high rate over whole cosmic history or 
light massive black holes grow too much! 

⇢ = 400Gyr�1

✓
M

3⇥ 106M�

◆�0.19



EMRIs - Event Rates
• To estimate EMRI event rates need several ingredients

- EMRI rate per galaxy numerical simulations suggest rate of 
black hole mergers (Hopman 2009, Amaro-Seoane & Preto 2011) 

- But cannot have such a high rate over whole cosmic history or 
light massive black holes grow too much! 

⇢ = 400Gyr�1

✓
M

3⇥ 106M�

◆�0.19

 0.001

 0.01

 0.1

 1

 10

 100

 10000  100000  1e+06  1e+07

f

M (solar masses)

m = 5
m = 10
m = 15
m = 20



EMRIs - Event Rates
- The problem is made even worse by the fact there are typically 

10-100 direct plunges for every successful inspiral. 

Steady state relativistic loss-cone 17
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FIG. 17.— The total Plunge and inspiral rates as a function of MBH mass.
The MC simulations (circles) agree with the analytic approximations for dy-
namics without RR (solid lines), Eqs. (46), (47). Simulations with RR show
that the contribution of RR is small: the discrepancy between the rates with
and without RR does not exceed ⇠ 30% over 5 orders of magnitude in M•.

µh = 2, ⌘h = 1, M
0

= 5.4⇥ 10

6 M� and �
0

= 100 km s

�1.
Thus

rh = 2 (M•,MW )

1/2
pc, (45)

where M•,MW = M•/4 ⇥ 10

6M� is the MBH mass scaled
to the mass of the Galactic MBH. The rates as function of the
MBH mass M• and the mass ratio Q = M•/M? are then

Rtot

p =3⇥ 10

�4M
�1/4
•,MW

⇥ logQ

6.70� 0.25 log (M•,MW )

yr

�1 ,

(46)

and

Rtot

i ⇡ 5⇥ 10

�6M
�1/4
•,MW

⇥ (logQ)

1/5

4.65� 0.25 log (M•,MW )� 2 log (logQ) /5
,

(47)

where we used the value AGW ⇡ 0.029, corresponding to
the GW dissipation approximation of Gair et al. (2006) (Ap-
pendix A). As shown in Figure 17, these analytic approxima-
tions are in agreement with the results of the MC simulations
over several orders of magnitude of M•.

6. DISCUSSION AND SUMMARY

The determination of the steady-state of galactic nuclei is
a fundamental open question in stellar dynamics, with many
implications and ramifications, and has been the focus of nu-
merous numerical and analytical studies. In particular, current
estimates of loss-rates vary over several orders of magnitude
due to theoretical and empirical uncertainties. Previous stud-
ies either used post-Newtonian N -body simulations, which
are limited to small-N , or did not include the relevant rela-
tivistic physics (Section 1). Building on recent progress in
the formal description of RR as a correlated diffusion process
(the ⌘-formalism, Bar-Or & Alexander 2014), we obtain here
a MC procedure and analytic expressions for the steady-state
distribution and loss-rates in galactic nuclei, taking into ac-
count two-body relaxation, RR, mass precession and the GR

effects of in-plane precession and GW emission. By cross-
validating the analytic estimates and the MC results with a
high degree of accuracy, and without the introduction of any
free fit parameters, we are able to confirm our analysis and
interpretation of the dynamics of the loss-cone in the context
of our underlying assumptions.

6.1. Discussion of main results
The advantage of modeling RR by the ⌘-formalism, over

previous attempts by other approaches (Rauch & Tremaine
1996; Hopman & Alexander 2006a; Gürkan & Hopman 2007;
Madigan et al. 2011; Merritt et al. 2011; Antonini & Merritt
2013; Hamers et al. 2014; Merritt 2015a,b), is that it allows to
derive the FP equation rigorously from the stochastic leading-
order relativistic 3D Hamiltonian. The resulting effective
DCs, which are thus derived from first principles, are then
guarantied to obey the fundamental fluctuation-dissipation re-
lation and the correct 3D maximal entropy solution (Binney
& Tremaine 2008, Section 7.4.3; Appendix E).

These constraints on the functional form of valid DCs are
critical, since the correct steady-state is the result of a fragile
near-cancellation of two large opposing currents (the diffu-
sion and drift); even small deviations from this relation (e.g.,
due to approximations, empirical fits, or reduction to lower
dimensions), will result in large errors. For example, Hamers
et al. (2014) obtained the RR DCs from numerical simulations
using an assumed functional form, Djj /

p
1� j2, based on

the fit of Gürkan & Hopman (2007)9 and on the ad hoc expres-
sion Dj = j�1Djj , which is inconsistent with the fluctuation-
dissipation relation and therefore leads to invalid steady-sate
solution. This was then partially remedied by Merritt (2015a)
who treated separately the Newtonian (j ! 1) and relativis-
tic (j ! 0) regimes. In the Newtonian regime, the Hamers
et al. (2014) data was re-fitted to DCs that effectively satisfy
the fluctuation-dissipation relation, which means that in the
absence of a loss-cone, the dynamics asymptote to the max-
imal entropy limit n(j) = 2j. However, in the relativistic
limit j ! 1, where the simulation statistics are poorer due
to the smaller phase-space volume, Merritt (2015a) used an-
alytic DCs based on the Hamiltonian model of Merritt et al.
(2011), which represented the stochastic background by an ad
hoc dipole pseudo-potential and a recipe for switching its di-
rection every coherence time. This recipe corresponded to the
⌘-formalism’s “Steps” or “Exponential ACF” noise (depend-
ing on the exact switching procedure), which both converge
to the same form in the j ! 0 limit (Bar-Or & Alexander
2014, Figure 1). As shown by Bar-Or & Alexander (2014, Eq.
42), in that limit Djj ⇡ j4/ ˜Tc and Dj ⇡ (5/2)j3/ ˜Tc, where
˜Tc = 0.5Tc⌫

2

GR (j = 1) /⌫2j (j = 0). This indeed satisfies the
fluctuation-dissipation relation, as any Hamiltonian model is
guaranteed to do. These DCs are different from the ones de-
rived by Merritt (2015a), Djj / j4/Tc and Dj = 2Djj/j,
who implicitly forced the solution to 2D in-plane motion by
setting sin i = 1 in the derivation (Merritt 2015a, Eqs.C.8-
C.9). Therefore, these derived DCs satisfy the 2D fluctuation-
dissipation relation 2Dj = @Djj/@j, rather than the correct
3D one, 2jDj = @jDjj/@j. These DCs therefore imply the
steady-state solution n(j) = const in the relativistic regime
(assuming no loss-cone); this is not the correct solution for 3D

9 We obtain a more accurate expression for D
jj

(Appendix D), which fits
torques measured in static wires simulations very well, over the entire range
j 2 [0, 1].

16 Bar-Or & Alexander
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FIG. 16.— The 2D loss-cone phase-space density in a Milky Way-like cusp
model with mass-precession coherence time and Gaussian noise, calculated
by high phase-space resolution MC simulations. Stars / stellar mass BHs of
10M� are assumed. Top: GR precession included. Mass precession limits
the efficiency of RR beyond ⇠ 100mpc, while GR precession limits RR
below the AI locus (gray line). RR is faster than NR only well away from
the loss-cone, inside the black contours (equally fast at the outer contour, 10
times faster at the inner contour). Bottom: When GR precession is artificially
switched off, RR remain effective all the way down to the loss-cone and is
faster than NR below a ⇠ 100mpc. As a result, stars are driven to plunge
trajectories well before they can lose enough energy by NR to reach the GW
loss-line. A central, strongly depleted cavity is formed, and the EMRI rate is
completely suppressed.

The MC simulations can be used to validate a simple ana-
lytic model for estimating the loss-rates and their dependence
on the parameters of the galactic nucleus, which is based on
identifying critical values of the sma, ac, below which the
probability of a star to cross the loss-line is O(1) (Lightman
& Shapiro 1977; Hopman & Alexander 2005). The loss-rate
is then � / N(< ac)/TNR(ac), where the proportionality
factor includes the suppression of the density near the loss-
line. For plunge events ac ⇠ O(rh) (Lightman & Shapiro
1977), while for GW inspiral ac ⇠ aGW ⌧ rh, the max-
imum of the GW line (Section 3). Figure 1 shows that the
region of phase-space where RR dominates the dynamics is
well separated from the loss-lines, is well below rh and well
above aGW . The timescale relevant for estimating is therefore
that of NR and not RR.

In order to estimate the integrated cosmic rates of EMRIs
or tidal disruption flares, it is necessary to scale the loss-rates

TABLE 3
THE PLUNGE AND INSPIRAL RATES IN MILKY WAY-LIKE CUSP MODELS

M
?

1 Processes2 T
c

3 Noise4 Plunge5 Inspiral5

1 No RR — — 730 3.1
1 GW1 SQ W 16000 0.0
1 GW1 SQ E 860 3.3
1 GW1 SQ G 880 2.3
1 GW1 M W 930 0.0
1 GW1 M E 840 3.2
1 GW1 M G 840 3.2
10 No RR — — 610 2.8
10 GW1 SQ W 6060 0.0
10 GW1 SQ E 760 1.9
10 GW1 SQ G 690 2.4
10 GW1 M W 800 0.0
10 GW1 M E 730 2.0
10 GW1 M G 730 2.5
10 GW2 M G 730 1.2
10 GW3 M G 740 1.1
1 Stellar mass in M�.
2 GW approximations: GW1 Gair et al. (2006), GW2 Peters (1964),

GW3 Hopman & Alexander (2006a)
3 Coherence time: M = Mass prec., SQ = Self-quenching.
4 Noise model: W = White, E = Exponential, G = Gaussian.
5 Event rates in units of 10�6

yr

�1.

by the parameters of the host galaxy, in particular the MBH
mass. Here we adopt a simplified one-parameter sequence
of galactic nuclei, where the free parameter is M•, which to-
gether with several additional fixed parameters define the se-
quence. The M•-scaling is based on the empirical M•/� rela-
tion M• = M

0

(�/�
0

)

� where � is the stellar velocity disper-
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(Alexander 2011).
Using this parameterization, and the approximation that the

steady-state distribution is given by a BW76 cusp, the to-
tal plunge and inspiral rates can be estimated from Eqs. (29)
and (32),
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where Q
0

= M•/M0

, aGW = AGW (µh logQ)

�4/5 and
AGW is a numerical factor which depend on the GW dissipa-
tion approximation (Appendix A).

In our MC simulations, we adopted for simplicity � = 4,

Bar-Or & Alexander (2015)



EMRIs - Event Rates
- Additionally, stellar cusps around massive black holes do not contain 

enough COs to support such high inspiral rates - the loss cone is 
depleted by EMRIs much faster than it is refilled by relaxation.
- Therefore we reduce the reference EMRI rate so that
- an MBH acquires no more than 1/e of its mass from EMR inspirals 

plus direct plunges;
- an MBH consumes no more than the number of COs expected in its 

radius of influence within a relaxation time.
- Need to assume certain ratio of plunges to inspirals. Use Np=0, 10, 100.
- Black hole spin/inclination influence capture cross-section - enhanced 

rate for spinning black holes and prograde EMRIs (Amaro-Seoane et al. 
2013).
- Host galaxy mergers also disrupt stellar cusps - massive black hole is not 

available as EMRI host until cusp has regrown.



EMRIs - Event Rates
• Consider three scenarios for 

cusp regrowth

- fiducial, t ~ 6 Gyr 
(Gultekin09) 

- optimistic, t ~ 2 Gyr 
(GrahamScott13) 

- pessimistic, t ~ 10 Gyr 
(KormendyHo13)

• Here t is the cusp regrowth 
time for a             black hole 
following an equal-mass merger.

106M�

tcusp ⇡ 6M1.19
6 q0.35Gyr



EMRIs - Event Rates
• To estimate EMRI event rates need several ingredients

- Compact object properties 

- Mass: consider only black 
holes. Assume                       
(usual assumption) or, given 
GW150914,                       . 

- Eccentricity distribution: 
assume capture through 
diffusion. Eccentricities 
mostly moderate at plunge.

- Inclination distribution: 
random at capture, but 
prograde EMRIs 
preferentially inspiral.

m = 10M�

m = 30M�

8

FIG. 1: Inspiral trajectories in the semi-major axis, eccentricity plane. The thick diagonal line represents the last stable orbit
using effective Keplerian values (Rp ≃ 4RS for e ≪ 0.1, see [70] for the general relation). The thin diagonal lines (in green
in the on-line colour version) show inspiral trajectories due to emission of gravitational waves (GWs) and thin dotted (blue)
lines are contours of constant time left until plunge, τGW, as labelled in years on the right [253]. We assume a 10 M⊙ stellar
black hole orbiting a 106 M⊙ MBH on a slowly evolving Keplerian ellipse. The thick (red) dash-dotted line shows ẽ(a), defined
by te = τGW (Eq. 4 with CEMRI = 1) assuming a constant value trlx = 1Gyr. Below this line, the effects of relaxation on the
orbit are negligible in comparison to emission of GWs. We schematically show typical orbital trajectories for EMRIs. Stars
captured by tidal binary splitting initially have a of order 100-1000 AU [5 × (10−4

− 10−3) pc] and e = 0.9 − 0.99 [228]. On a
time scale of order trlx ln(1 − ẽ)−1, the eccentricity random-walks into the GW-dominated region, leading to a nearly-circular
EMRI. If the star has not been deposited by binary splitting but has diffused from large radii or has been captured by GW
emission, it will initially have a much larger value of a, therefore producing a higher eccentricity EMRI. One sees that stars
with a

∼
> 5 × 10−2 pc can not enter the inspiral domain unless a is first reduced significantly, which takes of order trlx. The

grey region is the domain for sources whose orbital frequency is in the LISA band Porb < 104 s.

Amaro-Seoane et al. (2007) 



Model summary
• Twelve models in total. Model 1 is the fiducial reference model. 10

Mass MBH Cusp M–� CO EMRI rate [yr�1]
Model function spin erosion relation Np mass [M�] Total Detected (AKK) Detected (AKS)

M1 Barausse12 a98 yes Gultekin09 10 10 1600 294 189

M2 Barausse12 a98 yes KormendyHo13 10 10 1400 220 146

M3 Barausse12 a98 yes GrahamScott13 10 10 2770 809 440

M4 Barausse12 a98 yes Gultekin09 10 30 520 (620) 260 221

M5 Gair10 a98 no Gultekin09 10 10 140 47 15

M6 Barausse12 a98 no Gultekin09 10 10 2080 479 261

M7 Barausse12 a98 yes Gultekin09 0 10 15800 2712 1765

M8 Barausse12 a98 yes Gultekin09 100 10 180 35 24

M9 Barausse12 aflat yes Gultekin09 10 10 1530 217 177

M10 Barausse12 a0 yes Gultekin09 10 10 1520 188 188

M11 Gair10 a0 no Gultekin09 100 10 13 1 1

M12 Barausse12 a98 no Gultekin09 0 10 20000 4219 2279

TABLE I. List of EMRI models considered in this work. Column 1 defines the label of each model. For each model we specify
the MBH mass function (column 2), the MBH spin model (column 3), whether we consider the e↵ect of cusp erosion following
MBH binary mergers (column 4), the M–� relation (column 5), the ratio of plunges to EMRIs (column 6), the mass of the
COs (column 7); the total number of EMRIs occurring in a year up to z = 4.5 (column 8; for model M4 we also show the total
rate per year up to z = 6.5); the detected EMRI rate per year, with AKK (column 9) and AKS (column 10) waveforms.

of 2).2 Even smaller is the e↵ect of spin, a↵ecting EMRI
rates at the 10% level; there are more EMRIs when spins
are higher as the LSO is smaller (and so it is more di�-
cult to directly plunge [88]), but this only a↵ects a small
portion of orbits. However, we will see that spins will
play a more important role in the detectability of these
events by LISA. Changing the M–� relation, which sets
the relation between the MBH and its surrounding popu-
lation of COs, can introduce a variation of about a factor
of 2. More significant are the mass of the COs and the
number of plunges, as both of these directly impact the
mass accreted by the MBH and so the necessary duty
factor to preserve the population of MBHs. An increase
in either m or Np by a factor of X reduces the EMRI rate
by a similar factor. Since we are more uncertain of the
number of plunges, this has a greater potential impact on
the expected rate, here changing it by almost two orders
of magnitude. A drop of about one order of magnitude
is achieved by switching to the pessimistic MBH mass
distribution, as the reduction in the number of MBHs
naturally decreases the number of EMRIs.

For each of the 12 models outlined above we generate
10 Monte-Carlo realizations of the expected population
of EMRIs plunging in 1 year. We therefore construct
a library of 120 catalogs that includes all EMRI events
occurring in the Universe in 10 years for the 12 models.

2 This could be up to a factor of 4 if kick velocities of few hundred
km s�1 are considered in the computation of the cusp regrowth
timescale (cf. Eq. 9).

IV. WAVEFORMS, SIGNAL ANALYSIS AND
PARAMETER ESTIMATION

Having generated astrophysical populations of EMRI
systems, we need to determine which of the systems will
be observed by LISA. To do this, we need a model of
the GW emission from an EMRI system. Accurate grav-
itational waveforms from EMRIs can be computed using
BH perturbation theory, exploiting the large di↵erence in
masses of the two objects to regard the smaller as a per-
turbation of the spacetime of the larger and construct
an expansion in the mass ratio (see [99] for a review).
Perturbative calculations have not yet been completed
to the order necessary to accurately track the phase of
an EMRI over an entire inspiral, and these calculations
are extremely computationally expensive. Two approxi-
mate EMRI models have therefore been developed, which
capture the main features of EMRI waveforms at much
lower computational cost and can therefore be used to
explore questions connected to the detection and scien-
tific exploitation of EMRI observations. Of the two mod-
els, the numerical kludge [100, 101] is the more accurate
and is based on modelling the trajectory of the smaller
object as a geodesic of the Kerr background, with inspi-
ral imposed on the system. With further enhancements,
the numerical-kludge model may be accurate enough for
use in LISA data analysis. However, it is still relatively
computationally expensive. The analytic kludge (AK)
model [51] is computationally cheaper, at the cost of less
faithfulness to real EMRI signals. The AK model ap-
proximates gravitational wave emission by that from a
Keplerian orbit [102], with precession of the orbital per-
ihelion, precession of the orbital plane, and inspiral of
the orbit added using post-Newtonian prescriptions. The



EMRIs - Event Rates
• Final ingredient is detectability criterion. Assume need SNR > 20 

for detection. Compute SNR using analytic kludge waveform 
model (Barack & Cutler 2004), either cut off at the Kerr ISCO 
(AKK) or the Schwarzschild ISCO (AKS).
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m = 30M�, AKK
m = 10M�, AKK
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m = 10M�, Teukolsky



EMRIs - Event Rates 10

Mass MBH Cusp M–� CO EMRI rate [yr�1]
Model function spin erosion relation Np mass [M�] Total Detected (AKK) Detected (AKS)

M1 Barausse12 a98 yes Gultekin09 10 10 1600 294 189

M2 Barausse12 a98 yes KormendyHo13 10 10 1400 220 146

M3 Barausse12 a98 yes GrahamScott13 10 10 2770 809 440

M4 Barausse12 a98 yes Gultekin09 10 30 520 (620) 260 221

M5 Gair10 a98 no Gultekin09 10 10 140 47 15

M6 Barausse12 a98 no Gultekin09 10 10 2080 479 261

M7 Barausse12 a98 yes Gultekin09 0 10 15800 2712 1765

M8 Barausse12 a98 yes Gultekin09 100 10 180 35 24

M9 Barausse12 aflat yes Gultekin09 10 10 1530 217 177

M10 Barausse12 a0 yes Gultekin09 10 10 1520 188 188

M11 Gair10 a0 no Gultekin09 100 10 13 1 1

M12 Barausse12 a98 no Gultekin09 0 10 20000 4219 2279

TABLE I. List of EMRI models considered in this work. Column 1 defines the label of each model. For each model we specify
the MBH mass function (column 2), the MBH spin model (column 3), whether we consider the e↵ect of cusp erosion following
MBH binary mergers (column 4), the M–� relation (column 5), the ratio of plunges to EMRIs (column 6), the mass of the
COs (column 7); the total number of EMRIs occurring in a year up to z = 4.5 (column 8; for model M4 we also show the total
rate per year up to z = 6.5); the detected EMRI rate per year, with AKK (column 9) and AKS (column 10) waveforms.

of 2).2 Even smaller is the e↵ect of spin, a↵ecting EMRI
rates at the 10% level; there are more EMRIs when spins
are higher as the LSO is smaller (and so it is more di�-
cult to directly plunge [88]), but this only a↵ects a small
portion of orbits. However, we will see that spins will
play a more important role in the detectability of these
events by LISA. Changing the M–� relation, which sets
the relation between the MBH and its surrounding popu-
lation of COs, can introduce a variation of about a factor
of 2. More significant are the mass of the COs and the
number of plunges, as both of these directly impact the
mass accreted by the MBH and so the necessary duty
factor to preserve the population of MBHs. An increase
in either m or Np by a factor of X reduces the EMRI rate
by a similar factor. Since we are more uncertain of the
number of plunges, this has a greater potential impact on
the expected rate, here changing it by almost two orders
of magnitude. A drop of about one order of magnitude
is achieved by switching to the pessimistic MBH mass
distribution, as the reduction in the number of MBHs
naturally decreases the number of EMRIs.

For each of the 12 models outlined above we generate
10 Monte-Carlo realizations of the expected population
of EMRIs plunging in 1 year. We therefore construct
a library of 120 catalogs that includes all EMRI events
occurring in the Universe in 10 years for the 12 models.

2 This could be up to a factor of 4 if kick velocities of few hundred
km s�1 are considered in the computation of the cusp regrowth
timescale (cf. Eq. 9).

IV. WAVEFORMS, SIGNAL ANALYSIS AND
PARAMETER ESTIMATION

Having generated astrophysical populations of EMRI
systems, we need to determine which of the systems will
be observed by LISA. To do this, we need a model of
the GW emission from an EMRI system. Accurate grav-
itational waveforms from EMRIs can be computed using
BH perturbation theory, exploiting the large di↵erence in
masses of the two objects to regard the smaller as a per-
turbation of the spacetime of the larger and construct
an expansion in the mass ratio (see [99] for a review).
Perturbative calculations have not yet been completed
to the order necessary to accurately track the phase of
an EMRI over an entire inspiral, and these calculations
are extremely computationally expensive. Two approxi-
mate EMRI models have therefore been developed, which
capture the main features of EMRI waveforms at much
lower computational cost and can therefore be used to
explore questions connected to the detection and scien-
tific exploitation of EMRI observations. Of the two mod-
els, the numerical kludge [100, 101] is the more accurate
and is based on modelling the trajectory of the smaller
object as a geodesic of the Kerr background, with inspi-
ral imposed on the system. With further enhancements,
the numerical-kludge model may be accurate enough for
use in LISA data analysis. However, it is still relatively
computationally expensive. The analytic kludge (AK)
model [51] is computationally cheaper, at the cost of less
faithfulness to real EMRI signals. The AK model ap-
proximates gravitational wave emission by that from a
Keplerian orbit [102], with precession of the orbital per-
ihelion, precession of the orbital plane, and inspiral of
the orbit added using post-Newtonian prescriptions. The
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Mass MBH Cusp M–� CO EMRI rate [yr�1]
Model function spin erosion relation Np mass [M�] Total Detected (AKK) Detected (AKS)

M1 Barausse12 a98 yes Gultekin09 10 10 1600 294 189

M2 Barausse12 a98 yes KormendyHo13 10 10 1400 220 146

M3 Barausse12 a98 yes GrahamScott13 10 10 2770 809 440

M4 Barausse12 a98 yes Gultekin09 10 30 520 (620) 260 221

M5 Gair10 a98 no Gultekin09 10 10 140 47 15
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M7 Barausse12 a98 yes Gultekin09 0 10 15800 2712 1765

M8 Barausse12 a98 yes Gultekin09 100 10 180 35 24

M9 Barausse12 aflat yes Gultekin09 10 10 1530 217 177

M10 Barausse12 a0 yes Gultekin09 10 10 1520 188 188

M11 Gair10 a0 no Gultekin09 100 10 13 1 1

M12 Barausse12 a98 no Gultekin09 0 10 20000 4219 2279

TABLE I. List of EMRI models considered in this work. Column 1 defines the label of each model. For each model we specify
the MBH mass function (column 2), the MBH spin model (column 3), whether we consider the e↵ect of cusp erosion following
MBH binary mergers (column 4), the M–� relation (column 5), the ratio of plunges to EMRIs (column 6), the mass of the
COs (column 7); the total number of EMRIs occurring in a year up to z = 4.5 (column 8; for model M4 we also show the total
rate per year up to z = 6.5); the detected EMRI rate per year, with AKK (column 9) and AKS (column 10) waveforms.

of 2).2 Even smaller is the e↵ect of spin, a↵ecting EMRI
rates at the 10% level; there are more EMRIs when spins
are higher as the LSO is smaller (and so it is more di�-
cult to directly plunge [88]), but this only a↵ects a small
portion of orbits. However, we will see that spins will
play a more important role in the detectability of these
events by LISA. Changing the M–� relation, which sets
the relation between the MBH and its surrounding popu-
lation of COs, can introduce a variation of about a factor
of 2. More significant are the mass of the COs and the
number of plunges, as both of these directly impact the
mass accreted by the MBH and so the necessary duty
factor to preserve the population of MBHs. An increase
in either m or Np by a factor of X reduces the EMRI rate
by a similar factor. Since we are more uncertain of the
number of plunges, this has a greater potential impact on
the expected rate, here changing it by almost two orders
of magnitude. A drop of about one order of magnitude
is achieved by switching to the pessimistic MBH mass
distribution, as the reduction in the number of MBHs
naturally decreases the number of EMRIs.

For each of the 12 models outlined above we generate
10 Monte-Carlo realizations of the expected population
of EMRIs plunging in 1 year. We therefore construct
a library of 120 catalogs that includes all EMRI events
occurring in the Universe in 10 years for the 12 models.

2 This could be up to a factor of 4 if kick velocities of few hundred
km s�1 are considered in the computation of the cusp regrowth
timescale (cf. Eq. 9).

IV. WAVEFORMS, SIGNAL ANALYSIS AND
PARAMETER ESTIMATION

Having generated astrophysical populations of EMRI
systems, we need to determine which of the systems will
be observed by LISA. To do this, we need a model of
the GW emission from an EMRI system. Accurate grav-
itational waveforms from EMRIs can be computed using
BH perturbation theory, exploiting the large di↵erence in
masses of the two objects to regard the smaller as a per-
turbation of the spacetime of the larger and construct
an expansion in the mass ratio (see [99] for a review).
Perturbative calculations have not yet been completed
to the order necessary to accurately track the phase of
an EMRI over an entire inspiral, and these calculations
are extremely computationally expensive. Two approxi-
mate EMRI models have therefore been developed, which
capture the main features of EMRI waveforms at much
lower computational cost and can therefore be used to
explore questions connected to the detection and scien-
tific exploitation of EMRI observations. Of the two mod-
els, the numerical kludge [100, 101] is the more accurate
and is based on modelling the trajectory of the smaller
object as a geodesic of the Kerr background, with inspi-
ral imposed on the system. With further enhancements,
the numerical-kludge model may be accurate enough for
use in LISA data analysis. However, it is still relatively
computationally expensive. The analytic kludge (AK)
model [51] is computationally cheaper, at the cost of less
faithfulness to real EMRI signals. The AK model ap-
proximates gravitational wave emission by that from a
Keplerian orbit [102], with precession of the orbital per-
ihelion, precession of the orbital plane, and inspiral of
the orbit added using post-Newtonian prescriptions. The
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Observed Population

Number of events in mass range
Model M

10

< 5 5 < M
10

< 5.5 5.5 < M
10

< 6 6 < M
10

Total
M1 20 (10) 240 (60) 110 (50) 10 (0) 380 (130)
M2 30 (10) 190 (50) 70 (30) 0 (0) 290 (90)
M3 20 (0) 310 (90) 510 (220) 40 (20) 880 (340)
M4 70 (20) 280 (130) 80 (50) 0 (0) 440 (200)
M5 0 (0) 10 (0) 20 (10) 0 (0) 30 (10)
M6 20 (0) 270 (70) 210 (90) 20 (10) 520 (180)
M7 230 (50) 2190 (600) 1040 (480) 60 (40) 3530 (1170)
M8 0 (0) 30 (10) 10 (10) 0 (0) 50 (10)
M9 20 (10) 210 (60) 110 (50) 10 (10) 350 (130)
M10 30 (10) 240 (70) 100 (40) 10 (10) 370 (130)
M11 0 (0) 0 (0) 1 (0) 0 (0) 1 (0)
M12 230 (50) 2420 (670) 1730 (730) 180 (110) 4560 (1560)

Table 2. Number of events detected in each mass range, and total number of events, for each
model. Mass ranges are indicated in terms of M

10

= log
10

(M/M�). The primary values in each
cell assume an SNR threshold of 20 is required for detection, while the bracketed numbers given
the corresponding results for an SNR threshold of 30. SNRs are computed using the AK model
with the Schwarzschild plunge condition. All numbers are rounded to the nearest 10 apart from
the M11 results which are rounded to the nearest 1.

Number of events in mass range
Model M

10

< 5 5 < M
10

< 5.5 5.5 < M
10

< 6 6 < M
10

Total
M1 20 (0) 260 (60) 230 (100) 80 (60) 590 (230)
M2 20 (0) 210 (50) 160 (70) 50 (40) 440 (160)
M3 10 (0) 360 (90) 1000 (470) 240 (180) 1620 (750)
M4 50 (10) 300 (150) 140 (100) 30 (30) 520 (280)
M5 0 (0) 10 (0) 40 (20) 40 (30) 90 (50)
M6 20 (0) 300 (80) 430 (200) 200 (150) 960 (440)
M7 190 (40) 2390 (600) 2110 (930) 730 (510) 5420 (2090)
M8 0 (0) 30 (10) 30 (10) 10 (10) 70 (30)
M9 20 (0) 230 (60) 160 (70) 30 (20) 430 (160)
M10 30 (10) 240 (70) 100 (40) 10 (10) 370 (130)
M11 0 (0) 0 (0) 1 (0) 0 (0) 1 (0)
M12 190 (40) 2700 (680) 3710 (1690) 1830 (1380) 8440 (3790)

Table 3. As Table 2, but now with SNRs computed using the AK model with the Kerr plunge
condition.

factor of 40 or more, if we impose a cut o↵ at 106M�, when using the Schwarzschild plunge
condition. However, a higher proportion of the events are heavier mass when we use the Kerr
plunge condition. This is because in that model the EMRI can get closer to the MBH, shifting
the GW emission to higher frequencies and hence providing sensitivity to heavier MBHs. The
prospects for significant numbers of EMRI detections are therefore good even if the number of
lower mass MBHs is significantly depleted.

Table 4 shows how the number of events detected depends on the configuration of the detector
for the reference model M1. If the final LISA configuration is similar to the 1 Gm, four-link
NGO model used in [5], the number of events would be about a factor of 10 smaller. If a more
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EMRI Science - Astrophysics
• EMRI observations probe quiescent black holes at low to 

moderate redshift, which are hard to observe electromagnetically.

• EMRI observations will provide very precise parameter 
measurements for every observed event. Typical errors ~10-6–10-4 
for intrinsic parameters.
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FIG. 11. Distribution of the statistical errors in the measurement of EMRI intrinsic parameters: central MBH redshifted mass
(top left), spin (top right), CO mass (bottom left) and eccentricity at plunge (bottom right). The dashed lines mark the first,
second and third quartile of the distributions.

the luminosity distance is typically measured to 5–10%
precision. The luminosity distance is required to convert
the observed redshifted masses back to their true source
values. Distance uncertainty will therefore be the domi-
nant source of uncertainty in mass measurements.

The sky localization is typically better than 10 deg2.
This is the typical field of view of future large optical and
radio facilities such as the Large Synoptic Survey Tele-
scope [117] or the Square Kilometre Array [118]. EMRIs
localized to this accuracy can therefore be covered with
a single pointing to check for the possible presence of
electromagnetic counterparts, which could be associated
with the interaction between the CO and an MBH ac-
cretion disk [56, 58–60]. Electromagnetic counterparts
would be easiest to observe from close by sources, which
would also be the loudest, and so the best localized (usu-
ally to better than 1 deg2). Identifying a source galaxy
from an electromagnetic counterpart would allow for an
independent redshift measurement, which would improve
the precision of the (source-frame) mass measurements.

Finally, the precise measurements provided by EMRI
observations allow us to maps the spacetime of the MBH

and check its Kerr nature. The multipolar structure of
the Kerr metric is completely determined by its mass
and spin (the no hair theorem); the quadrupole moment
is locked to be QK = �a2M3 [119]. Since EMRIs are
expected to probe the multipolar structure of the cen-
tral MBH spacetime to high accuracy [46–50], they will
be able to confirm if the quadrupole moment obeys the
expected Kerr relation [120]. In Figure 13 we show the
precision with which possible deviations Q away from the
Kerr quadrupole can be constrained. We plot the error
on the dimensionless quantity Q ⌘ (Q�QK)/M3 (which
is independent of the redshifting of masses). As expected,
Q is better constrained by using AKK waveforms, since
the e↵ect of a modified quadrupole become important
only at small distances from the MBH, i.e. in the late
inspiral and plunge. Note that we do not consider any
particular modified theory of gravity: the parameter Q is
just a phenomenological parametrization of hypothetical
deviations from the general relativistic quadrupole mo-
ment, and we are interested in determining what level of
deviation would be measurable.

Overall, for all the parameters that we considered, the



EMRI Science - Astrophysics
• Typical sky localisation precisions are a few square degrees, or 

~10-5–10-3 steradians.
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FIG. 12. Distribution of the statistical errors in the measurement of EMRI extrinsic parameters: luminosity distance (left
panel) and sky localization (right panel). The dashed lines mark the first, second and third quartile of the distributions. In
the plot for the sky position, a horizontal solid red line marks an error of 10 deg2.

FIG. 13. Distribution of the statistical error in measurement
of the deviation of the MBH’s quadrupole moment away from
the Kerr value. The dashed lines mark the first, second and
third quartile of each distribution.

distributions of the errors are broadly consistent between
the di↵erent population models. The populations control
the number of events, and so are important for consid-
ering how much we could learn about the population of
MBHs and their host environments, but do not have a
significant impact on our ability to extract the parame-
ters for individual EMRIs.

VI. CONCLUSIONS

In this paper we have performed a comprehensive anal-
ysis of the performance of the recently proposed LISA
mission with regards to the detection and parameter
estimation of EMRIs. For the first time we have at-
tempted to thoroughly investigate the astrophysical un-

certainties that a↵ect the calculations of the expected
intrinsic EMRI rate. In more detail, we have constructed
competing astrophysical models for the EMRI rate as a
function of cosmic time, accounting for: the uncertainty
on the expected MBH spin magnitude; the disruption
of stellar cusps due to mergers; the MBH growth due
to EMRIs and plunges of stellar-mass CO’s; and possi-
ble viable competing choices for the MBH mass function,
the CO mass, and the correlation between MBH masses
and stellar velocity dispersions. Although simple, our
models capture the diversity of plausible astrophysical
uncertainties. Overall, we find that these astrophysical
assumptions produce a variance of up to three orders of
magnitude in the expected intrinsic EMRI rate.
For each astrophysical model, we have computed the

number of expected detections with the LISA interferom-
eter, as well as the precision with which the source pa-
rameters (both intrinsic and extrinsic) can be recovered.
To this purpose, because of computational-time limita-
tions, we have used two time-inexpensive kludge wave-
form models that we expect should bracket the results
that would be obtained with more sophisticated Teukol-
sky or self-force based templates. Our main findings are:

1. Irrespective of the astrophysical model, at least a
few EMRIs per year should be detectable by LISA.
This number may reach a few thousands per year
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2. Except for the most pessimistic astrophysical mod-
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• Can use set of observed EMRI 
events to probe the properties 
of black holes in the LISA 
range.

• Model BH mass function as a 
power law

•  Previous theoretical work gave

• Can repeat this analysis on our 
modelled EMRI populations.
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EMRI Science - Fundamental physics
• EMRIs are exquisite probes 

of fundamental physics.

• Key LISA science goal is to 
test the “no-hair theorem”

• Can detect deviations in 
quadrupole moment from no-
hair prediction at level of 
0.0001. 

• These tests just rely on 
accurate tracking of EMRI 
phase over many cycles - any 
LISA configuration can do 
this to high precision.

Ml + iSl = M(ia)l
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• A single EMRI event with an electromagnetic counterpart (and 
hence a redshift measurement) will give the Hubble constant to 
an accuracy of ~3%. N events give an accuracy of ~           %.

• Even without a counterpart, can estimate Hubble constant 
statistically (McLeod & Hogan 08)

- Let every galaxy in the LISA error box “vote” on the Hubble constant.
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• A single EMRI event with an electromagnetic counterpart (and 
hence a redshift measurement) will give the Hubble constant to 
an accuracy of ~3%. N events give an accuracy of ~           %.

• Even without a counterpart, can estimate Hubble constant 
statistically (McLeod & Hogan 08)

- Let every galaxy in the LISA error box “vote” on the Hubble constant.

- If ~20 EMRI events are detected at z < 0.5, will determine the 
Hubble constant to ~1%.

EMRI Science - Cosmology
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• Analysis assumed typical distance uncertainties for Classic 
LISA, but these will be achieved for some events with new 
configuration.

EMRI Science - Cosmology

Schwarzschild plunge condition Kerr plunge condition
Model N(z < 0.5) N(z < 0.5; small error) N(z < 0.5) N(z < 0.5; small error)
M1 30 5 29 7
M2 23 4 22 4
M3 62 15 60 16
M4 11 4 11 4
M5 2 0 3 1
M6 35 6 35 8
M7 298 48 285 52
M8 4 0 4 1
M9 25 3 25 5
M10 24 0 24 0
M11 0 0 0 0
M12 354 60 354 74

Table 5. Number of EMRIs detected at redshift z < 0.5 for each model, computed using each of
the two waveform plunge conditions. The first column in each case gives all EMRIs at z < 0.5,
while the second gives those EMRIs at z < 0.5 that also satisfy the error conditions that were
assumed in [31], i.e., �(lnDL) < 0.07z and �⌦ < 16z2.

Figure 3. Precision with which LISA could detect a deviation in the quadrupole moment of
the MBH spacetime away from the Kerr value.

5. Summary
We have described a comprehensive study of the prospects for detection of EMRIs with LISA.
Our study has attempted to quantify, for the first time, the uncertainties in EMRI rate
predictions arising from astrophysical uncertainties, as well as updating predictions for the new
LISA baseline configuration used in [7]. We find that LISA should observe several hundred EMRI
events over two years, with uncertainties of about one order of magnitude in each direction.
These predictions are robust to the distribution of MBH spins and the possible depletion of
MBHs at low masses. For all of these events LISA will determine the intrinsic parameters to high
precision (sub-percent accuracy), determine sky location to a few square degrees and determine
luminosity distance to O(10%). The parameter-estimation results are largely independent of the



Waveform 
requirements for 

LISA data analysis



EMRI Data Analysis
• Our ability to detect EMRIs in simulated LISA data was demonstrated 

in the Mock LISA Data Challenges, under idealised assumptions.

Babak, JG & Porter (2009)



Kludge Waveforms 
• Most algorithms rely on matched 

filtering - need waveforms.

• But, have various kludge 
waveforms (e.g., analytic kludge, 
numerical kludge, augmented analytic 
kludge etc. — N. Warburton talk).

• Some missing features, but these 
can be incorporated. Improved 
kludges should be able to match 
EMRI waveforms for O(months) 
or even O(year).

• Enough for detection and 
astrophysical parameter 
estimation [e.g., to get precision 
of O(10-2) if not O(10-4)].



Self-force Waveforms
• Accurate waveforms from the self-force programme will be 

essential for

- Calibration of approximations: kludges include various 
elements that have been fit to the results of perturbative 
calculations. These fits can be improved and new features 
included as perturbation theory calculations are completed.

- Validation: need accurate waveforms to validate 
approximations prior to LISA data analysis; will also want to 
compare observed signals to accurately modelled signals (as 
for GW150914).

- Tests of general relativity/the no-hair theorem: these 
rely on constraining O(1 cycle) differences from our 
predictions. Need the model to be at least as accurate as the 
size of the GR deviation being tested. 



Summary
• LISA is starting to happen now and EMRIs are a key element within 

the scientific objectives. 

• Have now properly explored the astrophysical uncertainties for the first 
time. A range of plausible models all give reasonable numbers of EMRI 
detections, prediction tens to thousands of observed events.

• We will precisely measure the parameters of every observed event. 
Therefore, irrespective of the model, EMRIs have fantastic potential

• Astrophysics: probe quiescent massive black holes, measure black 
hole mass function;

• Fundamental physics: testing the black hole no-hair theorem;

• Cosmology: determining the Hubble constant.

• EMRI data analysis will rely on waveform models. Kludges may be 
sufficient for detection but self-force models needed for calibration of 
approximations, validation and for performing precise tests of GR.


