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Motivation

» Solving equations of motion for compact binary inspirals is important and challenging
— Must use numerical methods, which is a bottleneck for data analysis applications

— Often can involve using high-order adaptive solvers to provide sufficiently accurate numerical
solutions over a very large number of orbits

— Important phase errors over many thousands of orbits (e.g., in LIGO’s bandwidth) can be
caused by inaccurately capturing the effects of very weak nonconservative forces

— Perturbative solutions exhibit secular behavior making result invalid over short times

* Most analytical methods are based on orbit-averaging/adiabatic approximations

— Advantages:
» Simpler equations to solve
» Often provides useful qualitative understanding of the system’s physical tendencies

— Disadvantages:

« Ambiguity about timescale to use for averaging: Period is associated with mean, eccentric, or true
anomalies? [see Pound & Poisson (2008)]

* Not a systematic procedure
* What are the errors of the resulting approximate solutions?
* Lose real-time phase information

+ Tend to be less useful as a system becomes more complicated (e.g., precession)
[see Chatziioannou et al (2016) for recent progress]
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Dynamical Renormalization Group
Overview

« Introduced as a method for solving ODE’s by Chen, Goldenfeld, and Oono (1996)

« Based on Renormalization Group Theory from high-energy and condensed matter
physics

« Based on naive perturbation theory

« Encapsulates several other asymptotic methods of global analysis including:
— Multiple-scale analysis
— WKB theory
— Boundary layer theory

« Systematic
— Provides a turn-the-crank method of finding globally valid approximate solutions
— Provides a formal error estimate on the perturbative solution
— Contains strong self-consistency checks of the calculation
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Dynamical Renormalization Group
Basic ldea

Perturbative solutions

Time at which to build a
perturbative solution is arbitrary

Exact solution,
which may not
be known

* Perturbative solutions (at fixed order)
at different times have the same form
but different initial data parameters

v

z(t) = Xo 4+ Vo(t —to) + Ot — to)?
x(t) = X{+ Vit —t)) + Ot — tp)?

* These solutions are related to each other by “renormalization group flows” from one
initial data set to another.
ty =t + 0t = X\~ Xo+Voot, ViV,

« What gets renormalized? Initial data parameters.
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Dynamical Renormalization Group
The algorithm

«  Write down the equations of motion

*  Write down a background solution around which to perturb

— This solution is written in terms of “bare” parameters (i.e., Rg(t;)), which implicitly depend upon the initial time

t,, away from which we flow.

» Use this background to calculate perturbatively the solution to equations of motion.
— The perturbation will in general have secular “divergences"” (i.e., terms that grow as (t-fy)).

+ Take this solution and write the bare parameters as renormalized parameters (i.e., Rz(7)) plus

“‘counter-terms”.

—  Counter-terms will be proportional to (z-f,)? and are chosen to
eliminate the f, dependence of the aforementioned solution.

— tis known as the “subtraction point” or “renormalization scale.”
—  This step yields the “renormalized” perturbative solution.
— Renormalized solution must be independent of the choice of 7.

— The solutions’ explicit dependence on 7 is cancelled by the
implicit dependence of the renormalized parameters on 7.

— Use this fact to derive a first-order differential equation (called the
“renormalization group (RG) equation”) for the renormalized parameter.

— The right-hand side of the RG equation is the “beta (B) function.”

« Solve the RG equations and set 7 = t, the observation time.

— All of the secularly growing terms are resummed at this order in perturbation theory.

Quantum

Dynamical
Renormalization
Group

—
A — to
v — T
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Binary inspirals at leading post-Newtonian order
Equations of motion

« 0PN equations of motion in polar coordinates (motion occurs in a plane for all time)

. 5 M+64M3u,+16M21/,3+16M2V, 9
F—_rw = — — + —— 7y P Y
r2 1574 573 5r
. _ 24 M3y 8M3v 8M?*v |
rw+ 2rw = — w — réw — w
573 512

« Radiation reaction from gravitational wave emission causes orbit to depart from a

background orbit
— For definiteness, consider a background circular orbit with a Keplerian angular frequency

wh =
B — T%
— Perturbed orbit is described by:
r(t) =rp+ or(t) or/rp = O(vy) o~ TR
w(t) =wp + ow(t) Swiwg = O(v%)

« Expand equations of motion to first order in perturbations off of background orbit
§7(t) — 3whor(t) — 2rpwpdw(t) = O(rpvy)

32
rpow(t) + 2wpor(t) = — gw%wg + O(wpvy)
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General solution

« General solution is parameterized by four numbers (the bare parameters, “B”)
64v 4 4 64v .

r(t)=rp — ?wBrB(t —to) + ?wBrfiB sinwg(t —to) + Apsin (wp(t — to) + ¢B)
+ O(wprpwiT? vy rpwpT)
96v 128v . 2wpAp .
w(t) =wp + —rBwB(t to) — rowS sinwp(t — to) — B8 gin (wp(t —to) + ¢B)

5 5 rp
—l—O(UlO 3T2 10 %T)
» Can shift some bare parameters to remove non-secular sinusoids using trig identities
64 2

64
Ap — Ap — —m“Bw% cos¢p , ¢B — ¢+ WBwB
5) 5 AB

sin ¢B

» This results in the following general perturbed solution:
64v 6

r(t)=rp — 2 rBwB( to) + Apsin ((t —to)wp + (;SB) + O(v rBwBT2 lerBwBT)
96r 2wpA
w(t) =wp + ?rBwB(t —tg) — wf B sin ((t —to)ws + ¢8) + O(vpwET? vwsT)
B
48y 2A
O(t) = ¢p + (t — to)wp + ——rFwh(t — to)? + =2 cos ((t — to)wp + d5) + O(WRWET? WRWET?)

5) B

« Two types of perturbations off of background orbit

— Non-secular terms (bounded in time) 5
— Secular terms (grow linearly with time and I'=t—to~ 3207210

eventually invalidate the perturbative solution) "
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Renormalization

« Renormalize the initial data parameters
— Parameters depend implicitly on initial time

— Write a bare (“B”) parameter as a
renormalized (“R”) parameter plus a
“counter-term”

v

— Use counter-terms to absorb secular divergences to  ty ty ¢
rp(to) = rr(T) 46, (, t0) 0y = O(1)
d5(to) = dr(T) H o4 (T, to) . 0 = O(vgrrwrT)
e -
wp(to) = wr(7) 4 6, (7, to) OUNETIEMMS 5 = O(vhw}T)
AB(tO) :AR(T) —+ 5A(T,t0) oA :O(U%ARWRT)

»  Write perturbative solutions in terms of renormalized parameters
— Drop higher order terms in vz°(t-t,) for perturbative consistency

64
r(t)=rr+ 9, — %r%w%(t —to) + Agsin ((t —to)wr + Or + 5¢) + O(U}%OTRw%Tz, U}%OTRQJRT)

96v 5 QCURAR

w(t) =wr + 9, + —TRwE(t —tg) —

5 sin ((t — to)wr + ¢r + 0¢) + O(VRWET? v wiT)
TR

2A
B cos ((t —to)wr + ¢r + 64) + O(VRWET? VR WRT?)

TR

48
G(t) = b + 65 + (£ — to)wr + ?”rgw;@ )% +
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Introduce the subtraction point/renormalization scale 7 through t-t, = (t-t)+(t-t,)
Choose counter-terms to remove (z-t;) dependencies
r(t) =rr Hor — 6§VerR(t —7)— M?VTRw%( —to) [+ Agsin ((t — T)wr +|(T — to)wr [+ dr + 0y
+ O(vprrwiT?, v rrRWRT)
w(t) = wr How|+ ggyerE(t T)H %TVTRQJE( —to)
2WRAR . 10, .3 2
R~ sin ((t — T)wr + (T — to)wr |+ ¢r +/0s) + O(WRWHT?, v WET)
o(t) = dr Hg|+ (t — T)wr + (T — to)wr|+ +(7 — )0
+ 48%erR(t —7)+ + 4?”er£( ~ to)?
+ Qip” cos ((t — T)wr + (T — to)wr + ¢r Hy) + OWRWHT?, vPwWRET?)

Counter-terms through first-order are:

343 10 2 2
wrT”, v wrT"?)

64
Or(T,t0) = gvr%w%(T —to) + O(vprrwaT? v rrwrT)
96
O (T,t0) = g urtwh (T —to) + O(vpwiT? v waT)
48
0p(T,t0) = — wr(T —to) + EW%WE(T to)” + O(vg'w
5A(T, to) = O(’U%ARQ}RT)
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Renormalization Group equations

 Recall: bare parameter = renormalized parameter + counter-term

64
rp(to) =rr(T) + EVT%(T)W%(T)(T —to) + O(v}zoer?%Tz, UIROTRwRT)
96
wp(te) = wgr(T) — EVT%(T)WE(T)(T —to) + (’)(U}%Ow;’%TQ, v]l%ow%%T)
48
¢B(to) = ¢r(7) — WR(T)(T — to) + EW%(T)ME(T)(T —t0)* + O(RwWHT? vpwiT?)

AB(tO) = AR(T) + O(UlROARwRT)

* Note that the bare parameters are independent of t
— Differentiate the bare parameters with respect to T and set the result to zero.
— Solve for the derivative of the renormalized parameter.

= e rR(nWi(n) + O VRTRWR)

d;u—tR = %VT%(T)CU%(T) + O( /U}%Ow2R)

d;% = wg(T) + + Ol )
d;;% = O(vR ARwR)

— Secular pieces at first-order automatically cancel (self-consistency check)

 The RG equations describe quantities that are finite, which cannot have secular
divergences
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Solve the RG equations to describe the “flow” fromz =ftot =t

Analytically, if possible
Numerically, otherwise (coupled first-order differential equations)

256 .
5

T’R(ti)

TR(t) WIZ%T)

3/2
) +O(vg)
t) = pplt : 1
Or(t) = Or(t:) + 32vrd, (t; )w (L) - 32ur, (t)wi(t)
Ar(t) = Ag(t;) + O(v}Arwr)

on(t) = wn(ts)

+ O(

o0

1/4
TR(t) = TR(ti) (1 — —VT’R(ti)w%(ti>(t — tz)> + O(U}%OTR(URT)

)

Substitute the RG solutions into the perturbative solutions and evaluate at t = ¢

r(t) = rr(t) + Ar(t) sin or(t) + O(vg'rr)
_ 2wr(t)Ar(?)
TR(t)

2AR(1) 10
TRPEt) cos or(t) + O(vy)

w(t) sin gr(t) + O(vpwr

= wR(t)

¢(t) = ¢r(t) +

)
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Comments

* Inanalogy with quantum field theory calculations, the first-order perturbative
calculation is sometimes referred to as a “1-loop” calculation

« Solutions to RG equations resum secular divergences order-by-order in powers of vT

1/4
rr(t) = rgr(t;) <1 — ?W%(ti)w%(m)(t — tl)> + O(vRrrwrT)
— ralty) (1 _ %yr%(ti)wg(ti)(t ) — 6;;14

(vrg(t)wh(t:)(t — ti))2 + O(U%LURT)?’) + O(vErrwrT)

— Third term is a secular divergence that appears at 2"9 order but is already captured at 15t order

« Error estimates are naturally provided during the calculation

« Dynamical Renormalization Group identifies (1-loop) invariants along the RG trajectory
1
32ur% (H)w (1
956 vrp(t)wp(t)

rh(t) <1 + ?Vr%(t)w%(t) t) = constant AR(t) = constant

ri(t)wg(t) = constant = M Or(t) + = constant

« Terms involving (t-t)(t-t;) must be cancelled by pieces generated from counter-terms
— Provides another self-consistency check of the calculation
— Removal of such cross terms is important for the renormalizability of the perturbative solution
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DRG to second order in e: The 2-loop calculation

« Use same equations of motion but expanded to 2" order in the perturbations.
« Find general solution to the 2" order equations
« Shift bare parameters (i.e., initial data) to absorb redundant, finite pieces

— These shifts have some freedom parameterized by p.

— Easiest to choose a “renormalization scheme” so as to keep the resulting 2-loop RG
equations as simple as possible, which is equivalent to choosing u to remove all the finite,
t-dependent pieces in the expression for the 2" order angular frequency solution.

 Renormalize initial data parameters to remove secular divergences.

— For example:
1A% 29696 6144
T2 1oop(t) = 3 7’1? - virEwoR |- T virEwi [(t —7)?|= (1 — tO)Q}
656 5 5 48 5 .7 2
— EVARTRWR cos (pr + wr(t — 7)) + EVART’RUJR(t —7)%cos (¢pr + wr(t — 7))
1 A% 496 5 6 :
+ 31 cos (2¢r + 2wr(t — 7)) — 1—5VART‘RWR[(t —7) H(r — to)] sin (¢r + wr(t — 7))
+6%" | H 6y |sin (pr + (t — T)wr)

— Yields the counter-terms for rg and Ag through 2-loops

— Importantly, cross terms involving (t-t)°(t-f,)? automatically cancel with other terms containing
lower-order counter-terms (self-consistency).
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At the end of the day, the counter-terms through 2-loops are

op = 6§Ver%( —tg) — %1/27“}210012( —t0)* + O(wRrrwiT?, vy rrwRT)
o=~ 2 5htr 10+ B )+ OAT, T
do = —wr(T —1to) + %?VTRWZ%(T —tg)? — % Vridws (1 —t)?

+ 5;)L4VAR7’RWR sin ®p(ty) — gf—gj sin 2@ p(tg) + O(vpwrT? v wsT?)
o4 = 496AR7/7“RW%(T —tg) + O(vy AgrwrT)

RG equations for initial data parameters are

CZn_f - _ %yr%w% + OV rRWR)
Ci;d_TR = %I/T%WR + O(vp'wR)

dg% = wr + O(vg)

dj% S %ARVTRWR + O(vy Arwr)

— Alarge number of cancellations happen to prevent secular terms from remaining in the RG
equations (self-consistency)

— RG equations and solutions for all renormalized quantities (except A) are same as at 1-loop
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« Solution for Ag (= egRr Where ey is the orbit’s small eccentricity) is

. 31/12 . 19/12
AR(t) = AR(ti) (Tjét?)) + O(U}%OARWRT) — eR(t) = AR(t) = eR(ti) (ij((ttz))) + O(U}QOGRTRWRT)

— Power of 19/12 accounts for the circularization of a compact binary inspiral
— Matches the well-known expression of Peters (1964) in the limit of small orbital eccentricity.

 RG invariants are same as at 1-loop except for a 2-loop modification to Ag invariant:

Ag(t) = constant = e} (t)rg () = constant

« Full, resummed perturbative solution through 2"? order is:

r(t) = ra(t) {HeR(t) sin 6r(t) + 5 h(1) - 297—6596 2,10 ()00 (1)

_ %yez%(t) S () wi(t) cos pr(t) + %e%{(zﬁ) cos 2¢R(t)] + O(vErR)
w(t) = wr(t) {1 — 2ep(t)sinpr(t) + %VeR(t)T%(t)W%(t) cos pr(t) — ge%(t) cos20r(t)| + O(vFwr)

8(t) = Or() + 2en(t) cos br(0) + g ver(tr(Hwh(t) sin 6r(t) — > h(0)sin26n(H) + O(u}f)
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Binary inspirals at first post-Newtonian order

* Include 1PN radiation reaction force but OPN potential (for demonstration)
* Following the same steps as for OPN order, the 1-loop RG equations are

drp 64 4v

== Ew%w% — ﬁ(336u — 3179)r%w
dwR 96v
= rowh i = =Y (3360 — 3179)rL.w:
dor dAr _

_— = W _— =

dr B ar

« Analytical solutions can be found when integrating these RG equations

BN~ 1) = k() — k(1) + 3aM (D) — rh(t) + 50? M (Fh(e) — ()

5 3
M)t o (20250

, 3/2 1/2
wr(t) = wr(t;) (rj((zi))) = ];4/7() (same as OPN)

A () - ¢R<ti>):§(5/2<t>—r5/2<t ) + e (i) — (o >)+a2M2( PO )
/2 \M5/? [ta h- \/TR anh ™! 3179
“= 536
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Summary

« The Dynamical Renormalization Group method:
— Is a systematic, turn-the-crank way to solve differential equations
— Provides formal error estimates on the resulting globally valid approximate solutions
— Generates perturbatively invariant quantities along a RG flow

— Has built-in checks for self-consistency that can be used to verify correctness of the
calculation

— Subsumes other well-known global approximation methods including:
WKB
* Multiple scale analysis
* Boundary layer theory

« We've applied DRG to several problems, at varying levels of completion:
— Damped harmonic oscillator (useful test ground for understanding the method in detail)
— Nonspinning OPN compact binary inspirals
— Nonspinning 1PN compact binary inspirals (in progress)
— Tidal dissipation of spinning, extended bodies in a binary (in progress)
— Poynting-Robertson effect on motion of dust irradiated by a star (in progress)
— Scalar self-force inspirals in a weak gravitational field
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Future work (1)

Apply DRG to precessing compact binary inspirals and other spinning systems
— Can analytic solutions to the RG equations be found?
— Provide a formal error estimate for the validity of the resummed perturbative solutions

« Other interesting applications include:
— Exoplanet orbital evolutions
— Binary inspirals/outspirals of not-so-compact bodies (e.g., mass-transferring stellar bodies)
— Orbital mechanics of satellites and spacecraft

« Could DRG handle transient (orbital) resonances since averaging methods are not
used? [e.g., see Flanagan & Hinderer (2012) for the breakdown of averaging]

« Can DRG be combined with numerical solutions of backgrounds?

— If so, could be useful for resumming secular divergences encountered in numerical
simulations of binary black holes for theories with corrections to general relativity
[see Okounkova et al (2017)]

— Could be useful for calculating gravitational self-force inspirals
[see Gralla & Wald (2008), Warburton et al (2012), Osburn et al (2016)]
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Future work (2)

Do the RG invariants have symmetries associated with them?

— Is there a “Noether’s Theorem” that relates continuous symmetry transformations to these
quantities conserved throughout the RG flow (e.g., inspirals)?

— Equal-mass and equal-spin-magnitude compact binary inspirals possess an inspiral-invariant
quantity found empirically in Galley et al (2010):

~ A

25’1 . SQ + (Sl . i)(SQ . L)
V5

Is it derivable using the Dynamical Renormalization Group approach?
Is there a similar expression more generally applicable?
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