Scattering trajectories in Schwarzschild spacetime

Outline

Local calculations

min

Wormholes and echoes

$$\mathcal{I}_0 = \frac{1}{(1 - e_t^2)^{7/2}} \left(1 + \frac{73}{24} \ e_t^2 + \frac{37}{96} \ e_t^4 \right)$$

"Enhances" flux from Hulse-Taylor pulsar (*e*=0.62) by factor of 12

We work in a gauge which simplifies the field equations

Periodic motion implies a discrete spectrum

$$\frac{\partial^2}{\partial r_*^2} - V_{\ell}(r) \left[\Psi_{\ell m}(t,r) = S_{\ell m}(t,r) \quad \longrightarrow \quad \left[\frac{d^2}{dr_*^2} + \omega_{mn}^2 - V_{\ell}(r) \right] X_{\ell mn}(r) = Z_{\ell mn}(r)$$

$$\Psi_{\ell m}(t,r) = \sum_{n=-\infty}^{\infty} X_{\ell m n}(r) e^{-i\omega_{mn}t}$$

 $\left|-rac{\partial^2}{\partial t^2}
ight|$

$$S_{\ell m}(t,r) = \sum_{n=-\infty}^{\infty} Z_{\ell m n}(r) e^{-i\omega_{mn}t}$$

(p,e) = (10,0.2)

Time domain

Frequency domain

$$\begin{bmatrix} -\frac{\partial^2}{\partial t^2} + \frac{\partial^2}{\partial r_*^2} - V_{\ell}(r) \end{bmatrix} \Psi_{\ell m}(t, r) = \underbrace{G_{\ell m}(t) \,\delta[r - r_p(t)]}_{\ell m \omega}(r) + \underbrace{F_{\ell m}(t) \,\delta'[r - r_p(t)]}_{\ell m \omega}$$

$$\begin{bmatrix} \frac{d^2}{dr_*^2} + \omega^2 - V_{\ell}(r) \end{bmatrix} X_{\ell m \omega}(r) = \underbrace{Z_{\ell m \omega}(r)}_{\ell m \omega}(r).$$

$$C_{\ell m \omega}^{\pm} \sim \underbrace{\int_0^{T_r}}_{0} dt \left(\hat{X}_{\ell m \omega}^{\mp} \underline{G_{\ell m}} + \frac{d\hat{X}_{\ell m \omega}^{\mp}}{dr} \underline{F_{\ell m}} \right)$$

$$\Psi_{\ell m}^{\pm}(t,r) \equiv \underbrace{\sum_{n=-\infty}^{\infty}}_{n=-\infty} C_{\ell m n}^{\pm} \hat{X}_{\ell m n}^{\pm}(r) e^{-i\omega_{m n} t}$$

We spanned the two dimensional space of orbits

Flux residuals after subtracting new PN parameters

Code by Thomas Osburn

Outline

Local calculations

min

Wormholes and echoes

There has been a lot of previous work, but here are a couple highlights

Turner did the 'Peters-Mathews calculation' for scattering

$$E_{\rm rad} = \frac{8}{15} \frac{M^6 \mu^2}{J^7} \left[24 \arccos(-1/e) \left(1 + \frac{73}{24} e^2 + \frac{37}{96} e^4 \right) + (e^2 - 1)^{1/2} \left(\frac{301}{6} + \frac{673}{12} e^2 \right) \right], \quad e \ge 1$$

The Turner result has only been extended to 1PN

We still use spectral methods in the unbound case

Bound

$$\Psi_{\ell m}(t,r) = \sum_{n=-\infty}^{\infty} X_{\ell m n}(r) e^{-i\omega_{mn}t}$$
$$S_{\ell m}(t,r) = \sum_{n=-\infty}^{\infty} Z_{\ell m n}(r) e^{-i\omega_{mn}t}$$

$$\frac{d^2}{dr_*^2} + \omega_{mn}^2 - V_\ell(r) \bigg] X_{\ell mn}(r) = Z_{\ell mn}(r) \longrightarrow$$

Unbound

$$\Psi_{\ell m}(t,r) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_{\ell m \omega}(r) e^{-i\omega t} d\omega$$
$$S_{\ell m}(t,r) = \frac{1}{2\pi} \int_{-\infty}^{\infty} Z_{\ell m \omega}(r) e^{-i\omega t} d\omega$$

$$\left[\frac{d^2}{dr_*^2} + \omega^2 - V_\ell(r)\right] X_{\ell m \omega}(r) = Z_{\ell m \omega}(r).$$

Time domain

Frequency domain

$$\begin{bmatrix} -\frac{\partial^2}{\partial t^2} + \frac{\partial^2}{\partial r_*^2} - V_{\ell}(r) \end{bmatrix} \Psi_{\ell m}(t, r) = \underline{G}_{\ell m}(t) \,\delta[r - r_p(t)] + \underline{F}_{\ell m}(t) \,\delta'[r - r_p(t)]$$

$$\begin{bmatrix} \frac{d^2}{dr_*^2} + \omega^2 - V_{\ell}(r) \end{bmatrix} X_{\ell m \omega}(r) = Z_{\ell m \omega}(r).$$

$$C_{\ell m \omega}^{\pm} \sim \int_{-\infty}^{\infty} dt \left(\hat{X}_{\ell m \omega}^{\mp} \underline{G}_{\ell m} + \frac{d\hat{X}_{\ell m \omega}^{\mp}}{dr} \underline{F}_{\ell m} \right)$$

$$\Psi_{\ell m}^{\pm}(t,r) \equiv \frac{1}{2\pi} \int_{-\infty}^{\infty} C_{\ell m\omega}^{\pm} \hat{X}_{\ell m\omega}^{\pm}(r) e^{-i\omega t} d\omega$$

Convergence depends on which master function you choose

Speed benefits come at large frequencies

The unbound spectrum is dense

The time domain is dense, too

The character of spectra changes with r-min

Smarr, 1977:

$$\left(\frac{dE}{d\omega}\right)_{\omega\to 0} = \frac{4}{\pi} \frac{\mu^2 M^2 \mathcal{E}^2}{b^2} \frac{(1+v^2)^2}{v^4} \left[2 - \frac{16}{3}v^2 + \left(3v - \frac{1}{v}\right)\log\left(\frac{1+v}{1-v}\right)\right]$$

The ZFL also predicts the memory effect

$$\Psi_{\ell m}(u, r_* \to \infty) = \frac{1}{2\pi} \int_{-\infty}^{\infty} C_{\ell m \omega}^+ e^{-i\omega u} d\omega$$
$$\Psi_{\ell m}(\infty, r_*) - \Psi_{\ell m}(-\infty, r_*) = \lim_{\omega \to 0} \int_{-\infty}^{\infty} e^{i\omega u} \partial_u \Psi_{\ell m}(u, r_*) du$$

$$\llbracket \Psi_{\ell m} \rrbracket = \lim_{\omega \to 0} \int_{-\infty}^{\infty} e^{i\omega u} \partial_u \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} C^+_{\ell m\omega'} e^{-i\omega' u} d\omega' \right) du = -\lim_{\omega \to 0} i\omega C^+_{\ell m\omega}$$

The ZFL also predicts the memory effect

The code struggles with small frequencies

The energy flux is interesting in the large and small limits

At the critical surface the particle will radiate forever

0

-300

-200

-100

t/M

0

100

200

0.25

300

At the critical surface the harmonics are evident

Frequency domain allows high Lorentz factor scatters

At high energies we agree with Peters' predictions

$$v \ll c$$

$$\frac{E_{\rm rad}}{M} = \frac{37\pi}{15} \frac{G^3}{c^5} \left(\frac{\mu}{M}\right)^2 \frac{v}{(r_{\rm min}/M)^3}$$

$$\mathcal{E} \gg 1$$

$$\frac{E_{\text{rad}}}{M} \sim \frac{G^3}{c^4} \left(\frac{\mu}{M}\right)^2 \frac{\mathcal{E}^3}{(r_{\min}/M)^3}$$

$$28 \pm 2$$

Outline

Unbound motion

Local calculations

min

Wormholes and echoes

The point particle can cause a Gibbs phenomenon

m

'Extended homogeneous solutions' avoids this problem

Barack, Ori, Sago Hopper, Evans

Scatters also have gauge invariants

Local calculations are hard, any way you cut it

min

Outline

Local calculations

min

Wormholes and echoes

Black holes ring because they have "light rings"

A wormhole can have two light rings

These are the main points

