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The laws of black hole mechanics

[Hawking 1972, Bardeen, Carter & Hawking 1973]

e Zeroth law of mechanics: O
r = const. (on H) ‘ )
A ‘"}??99
“M,S

e First law of mechanics:

K

OM = wy oS + — A

8

e Second law of mechanics: A3 = Ait+A,
(SA Z 0 —>» time
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What is the horizon surface gravity?
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What is the horizon surface gravity?

e For an event horizon H generated by a Killing field k¢,
i.e. for a Killing horizon:

K= 5 (VK" Vgka)|,,
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What is the horizon surface gravity?

e For an event horizon H generated by a Killing field k¢,
i.e. for a Killing horizon:

K= 5 (VK" Vgka)|,,

e For a Schwarzschild black hole of mass M, this yields

1 GM

4M  RZ
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@ Laws of binary black hole mechanics
In general relativity
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Generalized zeroth law of mechanics

[Friedman, Uryl & Shibata 2002]

e Black hole spacetimes with helical Killing vector field k®

e On each component #; of the event horizon, the expansion
and shear of the generators vanish

e Generalized rigidity theorem:
H = J;Hi is a Killing horizon

e Constant horizon surface gravity

/{12 = %(Voékﬂ Vﬁku)‘ﬂ,'

e The binary black hole system
is in a state of corotation
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Generalized first law of mechanics
[Friedman, Uryl & Shibata 2002]
e Spacetimes with black holes + perfect fluid matter sources
e One-parameter family of solutions {gn3(\), u®(A), p(A), s(N)}
e Globally defined Killing field k“ — conseved Noether charge @

6Q = Z ngr SA; +/£ [Ed((le) + To(dS) + vad(dca)]
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Issue of asymptotic flatness
[Friedman, Uryl & Shibata 2002]

e Binaries on circular orbits have a helical Killing symmetry k¢

e Helically symmetric spacetimes are not asymptotically flat
[Gibbons & Stewart 1983, Detweiler 1989, Klein 2004]

e Asymptotic flatness can be recovered if radiation can be
“turned off":

o Conformal Flatness Condition
o Post-Newtonian approximation

e For asymptotically flat spacetimes:

k® = t*+ Q¢ and 6Q = SMapm — Q26J
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Application to black hole binaries
[Friedman, Uryl & Shibata 2002]

¢ Rigidity theorem — black holes are in a state of corotation

e Conformal flatness condition — asymptotic flatness recovered
L preferred normalization of k; [Le Tiec & Grandclément 2017]

e For binary black holes the generalized first law reduces to

5MADM—Q(5J+Zf5A é o @

Tar s

//MADM»/
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@ Laws of binary black hole mechanics

In post-Newtonian theory
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First law for point-particle binaries
[Le Tiec, Blanchet & Whiting 2012]

e For balls of dust, the generalized first law reduces to
0Q = / z6(dMy) + -+, where z=—k%u,
b

e Conservative PN dynamics — asymptotic flatness recovered

e Two spinless compact objects modelled as point masses m;
and moving along circular orbits obey the first law

SMaom = 61+ ziom ‘o

oy

e ,,-»"“'(MADMrJ
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Extension to spinning binaries

[Blanchet, Buonanno & Le Tiec 2013]
e Canonical ADM Hamiltonian H(x;, pi,S;; m;) of two point
particles with masses m; and spins S; [Steinhoff et al. 2008]

o Redshift observables and spin precession frequencies:

oH _ _ _ OH
Om,- - an 65,

e First law for aligned spins (J = L+ ), S;) and circular orbits:

oM=Q 5L—|—Z (Zi 5ml- + Qi 55[) AQ * 22,92\,‘:

v"‘m1,514

el R .,""'MADMyL
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Corotating point particles
[Blanchet, Buonanno & Le Tiec 2013]

e A point particle with rest mass m; and spin 5; is given an
irreducible mass 1i; and a proper rotation frequency w; via

dm; = w;i0S; +ciop and  mf = pf + S7/(44:f)
e The first law of binary point-particle mechanics becomes
M =Q6J+ Y [zici dpi + (ziw; + Qi — Q) 65]]
i
e Comparing with the first law for corotating black holes,
OM = Q6J+ 3 (41iki) 017, the corotation condition is

z,-w,-:Q—Q,- — w,-(Q) — 5,(9)
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Black holes and point particles

SM — wi 65 = —— 5A
87

Rj
M—-Q zg — 0A;
0 6J : 87‘(5
oM —QdJ = E ziom;

SM—Q6J) = §A+z6m
8m

M-20)=3" ’Z;‘”

M—20J =Y zm

A
M—2QJ:K——|—zm
v
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@ Laws of binary black hole mechanics

First laws for generic bound orbits
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Averaged redshift for eccentric orbits

t=0 t=P
e Generic eccentric orbit parameterized t=0 1=T
by the two requencies ) e
ml
2w ¢
Qr = 5 Q(‘) = =
P P
e Time average of redshift z = dr/dt L
A m

over one radial period
1 P .

d-21
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First law of mechanics for eccentric orbits
[Le Tiec 2015, Blanchet & Le Tiec 2017]

e Canonical ADM Hamiltonian H(x;, p;; m;) of two point
particles with constant masses m;
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First law of mechanics for eccentric orbits
[Le Tiec 2015, Blanchet & Le Tiec 2017]

e Canonical ADM Hamiltonian H(x;, p;; m;) of two point
particles with constant masses m;

e Variation 6H + Hamilton's equation + orbital averaging:

SM = Q6L+ Q, 6R+ (z)dm
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First law of mechanics for eccentric orbits
[Le Tiec 2015, Blanchet & Le Tiec 2017]

e Canonical ADM Hamiltonian H(x;, p;; m;) of two point
particles with constant masses m;

e Variation 6H + Hamilton's equation + orbital averaging:

SM = Q6L+ Q, 6R+ (z)dm

e First integral associated with the variational first law:

M=2(QL+QR)+ Y (z)mi

]
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First law of mechanics for eccentric orbits

[Le Tiec 2015, Blanchet & Le Tiec 2017]

Canonical ADM Hamiltonian H(x;, pj; m;) of two point
particles with constant masses m;

Variation 6H + Hamilton's equation + orbital averaging:

SM = Q6L+ Q, 6R+ (z)dm

First integral associated with the variational first law:

M=2(QL+QR)+ Y (z)mi

]

These relationships are valid up to at least 4PN order,
despite the tail-induced non-local-in-time dynamics
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Particle Hamiltonian first law

e Geodesic motion of test mass m in Kerr geometry g, derives
from canonical Hamiltonian

_ 1,
H(x", pp) = =—— &% (x)Ppaps

2m
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Particle Hamiltonian first law

e Geodesic motion of test mass m in Kerr geometry g, derives
from canonical Hamiltonian

_ 1 B
A pu) = 5~ 2% (x)paps

e Hamilton-Jacobi equation completely separable [Carter 1968]
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Particle Hamiltonian first law

e Geodesic motion of test mass m in Kerr geometry g, derives
from canonical Hamiltonian

_ 1 B
A pu) = 5~ 2% (x)paps

e Hamilton-Jacobi equation completely separable [Carter 1968]
e Canonical transformation (x*, p,) = (g, Jo) to generalized
action-angle variables [Schmidt 2002, Hinderer & Flanagan 2008]
dJ,  OH _o. 99 _ oH _

dr ~ 9q, = dr 84, °
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Particle Hamiltonian first law

Geodesic motion of test mass m in Kerr geometry g, derives
from canonical Hamiltonian
- 1 B(

H(X“,Pu) = %Ea X)PaPﬁ

Hamilton-Jacobi equation completely separable [Carter 1968]

Canonical transformation (x*, p,) — (qa, Jo) to generalized
action-angle variables [Schmidt 2002, Hinderer & Flanagan 2008]

dJy  OH _o. 99 _ OH _
dr - 8qa - dr B aJa n

Varying H(J,) yields a particle Hamiltonian first law valid for
generic bound orbits [Le Tiec 2014]

§E = Q8L+, 60, + Q0 6y + (2) 6m

)
Wa
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Inclusion of conservative GSF effects

[lsoyama et al. 2017]

e Geodesic motion of self-gravitating mass m in time-symmetric
regular metric g,g + hsﬂ derives from canonical Hamiltonian

H(X“, P 7) = H(Xuv p,LL) + Hint(Xua P '7)
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Inclusion of conservative GSF effects

[lsoyama et al. 2017]

e Geodesic motion of self-gravitating mass m in time-symmetric
regular metric g,g + hsﬂ derives from canonical Hamiltonian

H(X“, P 7) = H(Xua p,LL) + Hint(Xﬂa P ’Y)
e In class of canonical gauges, one can define a unique effective
Hamiltonian H(J) = H(J) + 3(Hin:)(J) yielding a first law

valid for generic bound orbits:

0 =Qu 0L+ Q0T + Q9 6Tp + (z) dm

Capra 20 — June 22, 2017 Alexandre Le Tiec



Inclusion of conservative GSF effects

[lsoyama et al. 2017]

e Geodesic motion of self-gravitating mass m in time-symmetric
regular metric g,g + hsﬂ derives from canonical Hamiltonian

H(X“, P 7) = H(Xua p,LL) + Hint(Xﬂa P 7)

e In class of canonical gauges, one can define a unique effective
Hamiltonian H(J) = H(J) + 3(Hin:)(J) yielding a first law
valid for generic bound orbits:

88 = Qu 0L+, 67, + 8Ty + (2) 6m

e The actions 7, and the averaged redshift (z), as functions of
(€2,,924,€2,), include conservative self-force corrections from
the gauge-invariant averaged interaction Hamiltonian (H;..)
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® Applications
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Applications of the first law

e Fix ‘ambiguity parameters’ in 4PN 2-body equations of motion
[Jaranowski & Schafer 2012, Damour et al. 2014, Bernard et al. 2016]
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Applications of the first law

e Fix ‘ambiguity parameters’ in 4PN 2-body equations of motion
[Jaranowski & Schafer 2012, Damour et al. 2014, Bernard et al. 2016]

e Compute GSF contributions to energy and angular momentum
[Le Tiec, Barausse & Buonanno 2012]
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Applications of the first law

e Fix ‘ambiguity parameters’ in 4PN 2-body equations of motion
[Jaranowski & Schafer 2012, Damour et al. 2014, Bernard et al. 2016]

e Compute GSF contributions to energy and angular momentum
[Le Tiec, Barausse & Buonanno 2012]

e Calculate Schwarzschild and Kerr ISCO frequency shifts
[Le Tiec et al. 2012, Akcay et al. 2012, Isoyama et al. 2014]
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Applications of the first law

e Fix ‘ambiguity parameters’ in 4PN 2-body equations of motion
[Jaranowski & Schafer 2012, Damour et al. 2014, Bernard et al. 2016]

e Compute GSF contributions to energy and angular momentum
[Le Tiec, Barausse & Buonanno 2012]

e Calculate Schwarzschild and Kerr ISCO frequency shifts
[Le Tiec et al. 2012, Akcay et al. 2012, Isoyama et al. 2014]

e Test cosmic censorship conjecture including GSF effects
[Colleoni & Barack 2015, Colleoni et al. 2015]
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Applications of the first law

e Fix ‘ambiguity parameters’ in 4PN 2-body equations of motion
[Jaranowski & Schafer 2012, Damour et al. 2014, Bernard et al. 2016]

e Compute GSF contributions to energy and angular momentum
[Le Tiec, Barausse & Buonanno 2012]

e Calculate Schwarzschild and Kerr ISCO frequency shifts
[Le Tiec et al. 2012, Akcay et al. 2012, Isoyama et al. 2014]

e Test cosmic censorship conjecture including GSF effects
[Colleoni & Barack 2015, Colleoni et al. 2015]

e Calibrate Effective One-Body potentials
[Barausse et al. 2012, Akcay & van de Meent 2016, Bini et al. 2016]
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Applications of the first law

e Fix ‘ambiguity parameters’ in 4PN 2-body equations of motion
[Jaranowski & Schafer 2012, Damour et al. 2014, Bernard et al. 2016]

e Compute GSF contributions to energy and angular momentum
[Le Tiec, Barausse & Buonanno 2012]

e Calculate Schwarzschild and Kerr ISCO frequency shifts
[Le Tiec et al. 2012, Akcay et al. 2012, Isoyama et al. 2014]

e Test cosmic censorship conjecture including GSF effects
[Colleoni & Barack 2015, Colleoni et al. 2015]

e Calibrate Effective One-Body potentials
[Barausse et al. 2012, Akcay & van de Meent 2016, Bini et al. 2016]

e Compare particle redshift to black hole surface gravity
[Zimmerman, Lewis & Pfeiffer 2016, Le Tiec & Grandclément 2017]
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Applications of the first law

e Calibrate Effective One-Body potentials
[Barausse et al. 2012, Akcay & van de Meent 2016, Bini et al. 2016]

e Compare particle redshift to black hole surface gravity
[Zimmerman, Lewis & Pfeiffer 2016, Le Tiec & Grandclément 2017]
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@® Applications
Calibration of EOB models
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EOB dynamics beyond circular motion
[Le Tiec 2015]

2 [ ]
. EOB #
[ 2 _
Hreal . m Heﬁ(A!D’Q)

1 ml+ m2

e Conservative EOB dynamics determined by “potentials”
A=1-2M/r+wva(r)+---
D=1+vd(r)+---
Q=va(r)pi++

e Functions a(r), d(r) and q(r) controlled by (z)gsr(2,, Q)
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EOB dynamics beyond circular motion
[Akcay & van de Meent 2016]

a(v)
1
]
1
0.6 I
0.6 |
:
0.5 I
0.4 : -o- Numerical
0.4 = Ad\sco(V)
— disco(v)
02 — @)
— Joav)
:
0.01 0.05 0.1 0.15 1sco

Capra 20 — June 22, 2017 Alexandre Le Tiec



EOB dynamics beyond circular motion
[Akcay & van de Meent 2016]

av)

0.45

Numerical

A Aqgsco(V)

01 i Gisco(V)
i — Gois(v)

0.01 0.05 0.1 0.15 1sco
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EOB dynamics for spinning bodies

[Bini, Damour & Geralico 2016]

(0) resc
5GS

0.3

(2) resc
BGS

First law for spinning bodies

GSF contribution to redshift
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® Applications

Horizon surface gravity

Capra 20 — June 22, 2017 Alexandre Le Tiec



Surface gravity and redshift
[Blanchet, Buonanno & Le Tiec 2013]

e First law for corotating black holes
SM = Q56J+> (Auir) 11
i
o First law for corotating point particles

SM=Q6J+> " zici oy

1

e Analogy between BH surface

gravity and particle redshift R ‘
Zj

4/1,,'/-45,' < ZiCj Kj

e New invariant relations for NR/BHP /PN comparison: x;(2)
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Surface gravity and redshift
[Pound 2015 (unpublished)]

(Credit: Zimmerman, Lewis & Pfeiffer 2016)

Capra 20 — June 22, 2017 Alexandre Le Tiec



Redshift vs orbital frequency
[Zimmerman, Lewis & Pfeiffer 2016]

0.95} .
0.90} ™
0.85}

N
0.80}
0.75}
0.70}
0.65}

Capra 20 — June 22, 2017 Alexandre Le Tiec



Redshift vs orbital frequency

[Zimmerman, Lewis & Pfeiffer 2016]

2t
S 0
x -2Ff
N

-4t
T ot mm=12

2F /
""S O' — e ————
x -2f — my/m =5/7
5 -4

_6t— my/m =2/7

2. —
S of .
x =2F — m/m=7/9
5 -4

_6t — my/m =2/9

0.02 0.04 0.06 0.08 0.10
mQ
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Quasi-equilibrium initial data

e 341 decomposition of the metric:

ds? = —N2dt? + 5 (dx' + N'dt) (dxd + N/ dt)
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Quasi-equilibrium initial data

e 341 decomposition of the metric:
ds? = —N2dt® + 5 (dx' + N'dt) (dx + N/ dt)
e Conformal flatness condition approximation:

i = VA + by
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Quasi-equilibrium initial data
e 341 decomposition of the metric:
ds? = —N2dt? + 75 (dx' + N'dt) (dxd + Ndt)
e Conformal flatness condition approximation:

vij = Vi + by
e Assume exact helical Killing symmetry:

Ly 8ap = 0 with k%= (8t)a +Q (8¢)a
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Quasi-equilibrium initial data

3+1 decomposition of the metric:

ds? = —N2dt? + 5 (dx' + N'dt) (dxd + N/ dt)

Conformal flatness condition approximation:

vij = Vi + by
e Assume exact helical Killing symmetry:

Ly 8ap = 0 with k%= (8t)a +Q (8¢)a

Solve five elliptic equations for (N, N/, W)
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Quasi-equilibrium initial data

3+1 decomposition of the metric:

ds? = —N2dt? + 5 (dx' + N'dt) (dxd + N/ dt)

Conformal flatness condition approximation:

vij = Vi + by
e Assume exact helical Killing symmetry:

Ly 8ap = 0 with k%= (8t)a +Q (8¢)a

Solve five elliptic equations for (N, N/, W)

Determine orbital frequency 2 by imposing

MADM = MKomar
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Quasi-equilibrium initial data

3+1 decomposition of the metric:

ds? = —N2dt? + 75 (dx' + N'dt) (dxd + Ndt)

Conformal flatness condition approximation:

vij = Vi + by
e Assume exact helical Killing symmetry:

Ly 8ap = 0 with k%= (8t)a +Q (8¢)a

Solve five elliptic equations for (N, N/, W)

Determine orbital frequency 2 by imposing

MADM = MKomar

e Impose vanishing linear momentum to find rotation axis
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Surface gravity for mass ratio 2 : 1

Surface gravity (arbitrary units)
0.05 0.06
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|
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Surface gravity for mass ratio 2 : 1

»

Relative variations in surface gravity
0 001 00

I

-0.01 0.03
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Variations in horizon surface gravity
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Surface gravity vs orbital frequency

0.95 _
qu_ 1
0.9
M@
S
3.
<+ 085
08 N 3PN —— i
1PN 4PN —— \\
2PN CFC —e— \i\
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Surface gravity vs orbital frequency

® 3PN <3N
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Surface gravity vs orbital frequency
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Surface gravity vs orbital frequency
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Surface gravity vs orbital frequency

[Zimmerman, Lewis & Pfeiffer 2016]
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Perturbation theory for comparable masses

N 3r post-Newtonian
§ theory
s perturbation theory
& 2T ‘ & self-force
o3
g - - =
8 4 N
r numerical
relativity

I
.f

mass ratio
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Summary

e The classical laws of BH mechanics can be extended to binary
systems of compact objects

e First laws of mechanics come in a variety of different forms:
Context: exact GR, perturbation theory, PN theory

Objects: black holes, point particles

Orbits: circular, generic bound

o O O

o

Derivation: geometric, Hamiltonian
e Combined with the first law, the redshift z(£2) provides crucial
information about the binary dynamics:
o Binding energy E and total angular momentum J
o Innermost stable circular orbit frequency Qisco
o EOB effective potentials A, D, Q, Gs
o Horizon surface gravity s
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Prospects

e Exploit the Hamiltonian first law for a particle in Kerr:
o Innermost spherical orbit
o Marginally bound orbits
e Extend PN Hamiltonian first law for two spinning particles:
o Non-aligned spins and generic precessing orbits
o Contribution from quadrupole moments
e Redshift at second order — O(q?) corrections in E(Q), J(Q)
e Perturbation theory may prove useful to build templates for

IMRIs and even comparable-mass binaries
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Additional Material
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Why does BHPT perform so well?

In perturbation theory, one traditionally expands as
kmax

(2, mj) Zak my Q) g“ where g= my/my € [0,1]

e However, most physically interesting relationships f($2; m;) are
symmetric under exchange m; «— mo

Hence, a better-motivated expansion is

kmax

(2, mj) Zbk (mQ)v*  where v =mymy/m? € [0,1/4]

In a PN expansion, we have b, = O(l/cz”) =nPN+--.
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Why does BHPT perform so well?

e In perturbation theory, each surface gravity is expanded as
Ap1k1 = a(2Q) + q b(12) + O(q°)
Apgka = c(u29) + g d(u2Q) + 0(q°)

e From the first law we know that the general form is

dpini = Y VMA(Q) = VI—4r Y VFa(uQ)

k=0 k>0
e Each surface gravity can thus be rewritten as
duik; = A(uQ) + B(uQ2) v1 —4v 4+ C(pQ) v
+ D(uQ) vv/1 — dv + O(1?)

e Expand to linear order in g and match — A, B, C, D
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Rotating black hole + orbiting moon

Kerr black hole of mass M and spin S

perturbed by a moon of mass m <« M: .8‘£
gab(€) = Bab + £ Dgap + O(£?) S e

Perturbation Dg,;, obeys the linearized Einstein equation

with point-particle source

DGy, =81 DT, =8 m/dT da(x,y) usup

A

Particle has energy £ = —mt?u, and ang. mom. £ = m¢?u,

Physical Dg.p: retarded solution, no incoming radiation,
perturbations DMg = £ and DJ = L [Keidl et al. 2010]
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Rotating black hole 4 corotating moon

e We choose for the geodesic v the unique equatorial, circular
orbit with azimuthal frequency @y, i.e., the corotating orbit

e Gravitational radiation-reaction is O(¢?) and neglected
The spacetime geometry has a helical symmetry

e In adapted coordinates, the
helical Killing field reads

X* =t 4 op ¢

e Conserved orbital quantity
associated with symmetry:

z=—u,=m Y (E—-oyL)
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Zeroth law for a black hole with moon
[Gralla & Le Tiec 2013]

e Because of helical symmetry and corotation, the expansion
and shear of the perturbed future event horizon H vanish

Rigidity theorems then imply that H is a Killing horizon
[Hawking 1972, Chrusciel 1997, Friedrich et al. 1999, etc]

The horizon-generating Killing field must be of the form

k(e) = t° + (0p + e Dwy) d* + O(e?)

circular orbit
frequency Q2

The surface gravity « is defined in the usual manner as
1
K2 = -5 (V3K Vo kp) |1

e Since x = const. over any Killing horizon [Bardeen et al. 1973],
we have proven a zeroth law for the perturbed event horizon
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Angular velocity vs black hole spin
[Gralla & Le Tiec 2013]
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Surface gravity vs black hole spin
[Gralla & Le Tiec 2013]
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First law for a black hole with moon

[Gralla & Le Tiec 2013]

e Adapting [lyer & Wald 1994] to non-vacuum perturbations of
non-stationary spacetimes we find (with Q.p = —€2pcg VkY)

/82(603[) - eabckc) = 25/253bchdeke_/z5abcddeef6gef

i

e Applied to nearby BH with moon
spacetimes, this gives the first law

Mg = Q6J + —— 6A+z6m
8 B

e Features variations of the Bondi
mass and angular momentum
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