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The multiscale expansion

‘Multiscale’ - a combination of approximations

Used to describe the use of two-timescale approximation where valid,
combined with other methods:

Near the small companion
Far from the inspiral

Near the SMBH horizon

Our (ambitious) goals
An algorithm built on existing SF tools for ensuring long scale
(t ~ M/e) fidelity of:

Post-adiabatic waveform

Dynamical invariants of the inspiral for NR and PN comparison to
second order
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What we want from multiscale

Post-adiabatic Waveform - important for parameter estimation for
EMRIs, and possibly detection

Phase accuracy throughout waveform

Slowly varying memory effects

Dynamical invariants - highly useful .
for comparisons and confirmations EMRIs
with NR and PN computations

Redshift z [Detweiler]

vris @
Surface gravity [Zimmerman]
Precession of Perihelion [Le Tiec] ..
Many of these are more .. L @  Separation

demanding for a multiscale
scheme than waveforms
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Multiscale requirements

Waveforms

Adiabatic Post-adiabatic

Required Order
of Self-Force

Second Order Dissipative

First Order Dissipative + First Order Conservative

Errors in Amplitude O(f) 0(62>
Errors in Phase o) O(e)
Required oscillatory metric order O(e) O(e?)
Required quasistatic metric order o(1) O(e)
Dynamical Invariants (example: surface gravity)
First order Second order

Required Order Second Order Dissipative
of Self-Force + First Order Conservative

Required oscillatory metric order O(e) O(€?)

First Order Dissipative

Required quasistatic metric order O(e) O(€?)

Requires quasistatic matching from distant regions
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Two-Timescale in interaction zone : —M /e < 1, < M /e

Two-Timescale approximation promotes time dependence to multiple
(temporarily) independent variables ¢ — {Z, ¢}

da’ _

. i=Hty= -
_ t Mt =et pm Q(t, €)
=
o Action angle variables ¢ coordinates on compact directions of the
% symplectic manifold
= ~
. g Periodic behavior depends on ¢*, secular depends on ¢
g Worldline can be expressed using action angle variables and geodesic
° = parameters PM = {E,L,,Q} :
dP]\/f B
=cGIM(POM(§) ) + O(e?)
— dt
dg? ~ ~
—= = (POM (D) + egVA(POM (D), )
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Improved long time fidelity

Metric ansatz (g (ﬂ) taken to be Schwarzschild)

gap = g 0@ ) +enl (T ¢, T)+2n((E ¢4, 7)) +O(E)

_

Worldline ansatz:

standard result for black hole perturbation theory -
geometric mean ~ /M «

Our method applies the Two-Timescale (
approximation to metric perturbations to preserve
field precision for the full inspiral

[—
=3
—t ~ ~
3 0 =00 e+ O =
N
g Assume no resonances in the domain of interest <
i Precision of approximation preserved: dephasing
o time is the entire inspiral ~ Mz/u, rather than the C
®|
_—
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Breakdown of Two-Timescale at long distances

Two-Timescale approximation assumes radiation timescale longer
than all other scales of the system

] At each order, we solve the wave equation

=)

= Ogahpw + Ry hep, =S,

@

I 7oA

A for some {t,¢**, x*}-dependent source

—t+

=.

S At long scales, inverting [ 4 is solving for perturbations assuming

N an eternal source

= .

® = Leading second-order source scales as ~ Q2 /r?
For second order static Green's function, these contributions give
divergent retarded field solution if integration domain r’ € [a, 00
g g

similar problems arise at r, — —o0
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Small companion puncture

uoruedwon) [fewis JeaN

Two-timescale ansatz breaks down near small companion

Use either Self-Consistent evaluated at each fixed ¢, or an
extended Self-Consistent

Known puncture metric, derived by [Pound]

Independent of matching conditions, dependent only on
small companion structure

Non-exact worldline z# = z(O# 4 e2(Ur 4 requires a
re-expansion from Self-Consistent

Self-acceleration - direct re-expansion, up to slow time derivatives
Puncture dipole correction - O(y) displacement in worldline position

Residual field derived in puncture region via relaxed EFE

BB = ~Euw 371+ 8,0, k()] + T,
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Breakdown of Self-Consistent at long times

uoruedwon) [fewis JeaN

Self-consistent formalism deals well with the slow evolution of
the worldline by expanding the metric as a functional of the
full worldline

guw = 950 [2"] + eh{) [a#; 2#] + ERP [zt 2] + O(€?)

v

Equations of motion are the Relaxed EFE and Lorenz gauge condition

Slow evolution of background spacetime is incorrectly controlled
Mass and spin evolution enter at the order of energy flux ~ O(e*)

Entirely fixed by Lorenz gauge on initial data surface
- no evolution during inspiral

Linearly growing mass and spin at second order invalidates
the result at a radiation-reaction time

Direct two-timescale extension does not solve these problems,
but a more involved incorporation can recover long-time fidelity
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Interaction zone: |r.| < M/e
Two-Timescale expansion,
worldline Two-Time
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Geometric optics for the far zone

Spatial scales vary with &% ~ ez?, on scale with slow inspiral

Construct ansatz with single fast variation parameterized by scalar
function ©(z")/e

e
la”,) = (o el 8]+ 24 |2,
+ &%k [gz", (;)] + 0(54)>

The rescaling of the coordinates grants an additional order to the
weak waves, as they depend on 1/r =¢/7

U077 1B

Define wave vector associated with the fast periodic dependence

k,=V,0
Up to gauge, the leading dynamical equation enforces null wave vector

EFE N, =0

N
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First order - direct wave solutions

U077 1B

N

Define tetrad {k,[,e*} such that
W, =k'k,=0 klea,=1"ea, =0
EHl, =—1 eaAEBBna5:5AB
Leading wave equation implies
6B jap =08ju =0
08jia =0

Lorenz gauge not imposed, but compatible with the
results after EFE is calculated

Compatible with [Blanchet and Damour] Post-Minkowski
leading order in 1/r outgoing waves
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Second order - propagation along null cones

Null cone propagation at leading order gives simple 1/7 radiation
dependence

1 . .
%aGJAB + 0700jap =0

Subleading Lorenz gauge condition informs otherwise unconstrained
parts (for instance, the £ = 0,1 parts not expressible as TT waves)

V¥5 + EOek, =0

Remaining components fix the now nontrivial non-TT
components of £,

U077 1B

1 .
—56"708kan == G13Vj]

1 ;
—508kia == GVl
& ky =0
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Third order equations - quasistatic 7

Impose Lorenz gauge on the quasistatic part jo

Background correction 4+ General wave equation
DjO/w [jy] + RuguijUp = - <GL252) []a .ﬂ>
Solvable via techniques first introduced by [Blanchet and Damour]

General solution written as integral:

1 =] ~S(k)(£7 2) s (2 771)B—k+l+2 _ (g+f)B—k+l+2
K(B)/; % 8L( ”

U077 1B

Jo = FPB—>0|:
7

With some manipulation, we can re-write the retarded solution as a
homogeneous + particular solution

Jo,e = 0L=— ;
7
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Third order quasistatic - asymptotic evaluation

Evaluate integral assuming large 7. Geometric optics construction
gives G(22) ~ 772

Scales similarly with € to outgoing waves - ‘memory’-like effect

2 A [ (1. 2 &K1
H L 2 R ) (g s A2 10 (7
o e=5 d2<2 1n27;+;n> <G [ij]>+O(T In(7))
=
T s Jf@ 5 1"
o 4 — {22\ (5\(a — 5)
; or = aLka/_oods<G >(s)(u 3)
o
=3
D

e @

Scaled coordinates Z explicitly incorporate the long scale
dependence of the system

Region of nonlinear source r ~ M/e = 7 ~ M
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Third order quasistatic - interaction region matching

auoyz 1eq (1eaN)

®
—

assume 7 < M

near-cancellation within integral suppresses solution

for small +
(2 T)B k4442 (Z+7')B k+2+2+0( )

Scaled coordinate solution proceeds as in [Pound 2015], resulting in

Jormo = — SP(@) + & <>1n<2f/62>—/ 45882 (@ - 5)In(3)
0

; __ "
J0.20 =7 5

Note that the constant-in-7* contributions remain second order

as we take 7 < M, unlike the leading order wave solution
We recover the near-zone reasoning from PM that the nonlinearly
sourced quasistatic should be O(¢*)
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Near-horizon (work in progress)

Asymptotically plane wave solutions approaching horizon

Only quasistatic, second-order perturbations for matching to
interaction zone

Two-Timescale assumption violated near the horizon

Generally, we're exploring methods of using adjusted or scaled

coordinate dependence to simplify the near-horizon expansion
Geometric optics approximation is confounded by exponentially
small {r,t} components ~ e"*/2M

No additional separation of scales - leading order solution is
constant in 7., compared to 1/r dependence in far zone

9U077 UOZLIOH IR3N
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Multiscale status report

Interaction zone computations fairly
well-understood

Several methods work in concert to form a
globally valid approximation scheme

Far zone well under control (largest update since
last Capra)

Open questions and future work for multiscale

Near horizon - similarities to far zone, but with
confounding scaling details

resonances - generally introduce powers /2

second order Kerr ...

Post-adiabatic two-timescale Cornell University



Self-Consistent hybrid construction

Consider the Two-Timescale form of the metric perturbation
WM A, 1, ']

Construct an equivalent functional of the worldline z* by evaluating
the instantaneous ‘osculating’ geodesic action-angle variables

Lorenz gauge condition at the heart of the difficulty - in
Self-Consistent, it determines the motion of the small companion,
and in Two-Timescale, it determines the 6 M and da.

Separate equations of motion for the two distinct (but both valid)
expressions of the worldline
Exact worldline obeys direct Self-Consistent equation of motion

Perturbatively expanded worldline obeys re-expanded Self-Consistent

Consistency is easy to show by summing the orders of the
perturbative worldline

Finally, the perturbative worldline may be used with the Lorenz
gauge condition in the Two-Timescale expressions to derive the
mass and spin evolution
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Suggested Algorithm for Post-Adiabatic Computation

Computation

Understood

Computation

- Unfinished

\ Numerics
Required

» o% [PoundIsoyama,

«* = Yamada,Tanaka]
(In progress)

Worldline

Orbit

Parameters

Interaction
Metric

Matching
Metric

/’ 0

R TTTTTT e .

) Hor(2)
LY :

‘Waves

Adiabatic
Waveform

J Tl

T 5

Post-Adiabatic

Waveform
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