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The multiscale expansion

I ‘Multiscale’ - a combination of approximations
I Used to describe the use of two-timescale approximation where valid,

combined with other methods:
I Near the small companion

I Far from the inspiral

I Near the SMBH horizon

I Our (ambitious) goals
I An algorithm built on existing SF tools for ensuring long scale

(t ∼M/ε) fidelity of:
I Post-adiabatic waveform

I Dynamical invariants of the inspiral for NR and PN comparison to
second order
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What we want from multiscale

I Post-adiabatic Waveform - important for parameter estimation for
EMRIs, and possibly detection

I Phase accuracy throughout waveform

I Slowly varying memory effects

I Dynamical invariants - highly useful
for comparisons and confirmations
with NR and PN computations

I Redshift z [Detweiler]

I Surface gravity [Zimmerman]

I Precession of Perihelion [Le Tiec]

I Many of these are more
demanding for a multiscale
scheme than waveforms
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Multiscale requirements

I Waveforms

Adiabatic Post-adiabatic

Required Order
of Self-Force

First Order Dissipative
Second Order Dissipative

+ First Order Conservative

Errors in Amplitude O(ε) O(ε2)
Errors in Phase O(1) O(ε)

Required oscillatory metric order O(ε) O(ε2)
Required quasistatic metric order O(1) O(ε)

I Dynamical Invariants (example: surface gravity)

First order Second order

Required Order
of Self-Force

First Order Dissipative
Second Order Dissipative

+ First Order Conservative

Required oscillatory metric order O(ε) O(ε2)
Required quasistatic metric order O(ε) O(ε2)

I Requires quasistatic matching from distant regions
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Zones and scales

Near Horizon

Far Zone

matching

Interaction Zone

Near Small
Companion

I Interaction zone:
−M/ε� r∗ �M/ε

I Near small companion:
distance from small
companion r̄ �M

I Far zone:
r∗ �M

I Near-Horizon:
r∗ � −M
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Two-Timescale in interaction zone : −M/ε� r∗ �M/ε

I Two-Timescale approximation promotes time dependence to multiple
(temporarily) independent variables t→ {t̃, qA}

t̃ =
µ

M
t ≡ εt dqA

dt
= Ω(t̃, ε)

I Action angle variables qA coordinates on compact directions of the
symplectic manifold

I Periodic behavior depends on qA, secular depends on t̃

I Worldline can be expressed using action angle variables and geodesic
parameters PM ≡ {E,Lz, Q} :

dPM

dt
=εG(1)M (P (0)M (t̃), qA) +O(ε2)

dqA

dt
=ΩA(P (0)M (t̃)) + εg(1)A(P (0)M (t̃), qA)
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Improved long time fidelity

I Metric ansatz (g
(0)
αβ taken to be Schwarzschild)

gαβ = g
(0)
αβ (x̄i)+εh

(1)
αβ(t̃, qA, x̄i)+ε2h

(1)
αβ(t̃, qA, x̄i)+O(ε3)

I Worldline ansatz:

zµ(t) = z(0)(t̃, qA) + εz(1)(t̃, qA) +O(ε2)

I Assume no resonances in the domain of interest

I Precision of approximation preserved: dephasing
time is the entire inspiral ∼M2/µ, rather than the
standard result for black hole perturbation theory -
geometric mean ∼

√
µM

I Our method applies the Two-Timescale
approximation to metric perturbations to preserve
field precision for the full inspiral
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Breakdown of Two-Timescale at long distances

I Two-Timescale approximation assumes radiation timescale longer
than all other scales of the system

I At each order, we solve the wave equation

�qAhµν +Rµ
σ
ν
ρhσρ = S,

for some {t̃, qA, xi}-dependent source

I At long scales, inverting �qA is solving for perturbations assuming
an eternal source

I Leading second-order source scales as ∼ Ω2/r2

I For second order static Green’s function, these contributions give
divergent retarded field solution if integration domain r′ ∈ [a,∞)

I similar problems arise at r∗ → −∞
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Small companion puncture

N
ear S

m
all C

o
m

p
an

io
n

I Two-timescale ansatz breaks down near small companion
I Use either Self-Consistent evaluated at each fixed t̃, or an

extended Self-Consistent

I Known puncture metric, derived by [Pound]
I Independent of matching conditions, dependent only on

small companion structure

I Non-exact worldline zµ = z(0)µ + εz(1)µ + . . . requires a
re-expansion from Self-Consistent

I Self-acceleration - direct re-expansion, up to slow time derivatives

I Puncture dipole correction - O(µ) displacement in worldline position

I Residual field derived in puncture region via relaxed EFE

Eµν [h
(2)R
αβ ] = −Eµν [h

(2)P
αβ ] + Sµν [h

(1)
αβ , h

(1)
αβ ] + δTµν
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Breakdown of Self-Consistent at long times
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I Self-consistent formalism deals well with the slow evolution of
the worldline by expanding the metric as a functional of the
full worldline

gµν = g(0)
µν [xµ] + εh(1)

µν [xµ; zµ] + ε2h(2)[xµ; zµ] +O(ε3)

I Equations of motion are the Relaxed EFE and Lorenz gauge condition

I Slow evolution of background spacetime is incorrectly controlled
I Mass and spin evolution enter at the order of energy flux ∼ O(ε2)

I Entirely fixed by Lorenz gauge on initial data surface
- no evolution during inspiral

I Linearly growing mass and spin at second order invalidates
the result at a radiation-reaction time

I Direct two-timescale extension does not solve these problems,
but a more involved incorporation can recover long-time fidelity
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Zones and scales of approximation methods

Near Horizon

Geometric Optics

matching

Two Timescale

Puncture

I Interaction zone: |r∗| �M/ε
Two-Timescale expansion,
worldline Two-Time

I Post-adiabatic evolution
requires matching to
adjacent regions

I Near small object : r̄ �M
Puncture, Self-Consistent [Pound]

I Far zone: r∗ �M
Geometric optics, with some
Post-Minkowski techniques
-[Extending Pound 2015]

I Near-Horizon: r∗ � −M
Black hole perturbation theory
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Geometric optics for the far zone

I Spatial scales vary with x̃i ∼ εxi, on scale with slow inspiral

I Construct ansatz with single fast variation parameterized by scalar
function Θ(xν)/ε

gµν(xν , ε) =ε−2

(
ηµν + εhµν [x̃ν ] + ε2jµν

[
x̃ν ,

Θ

ε

]
+ ε3kµν

[
x̃ν ,

Θ

ε

]
+O(ε4)

)
I The rescaling of the coordinates grants an additional order to the

weak waves, as they depend on 1/r = ε/r̃

I Define wave vector associated with the fast periodic dependence

kµ = ∇µΘ

I Up to gauge, the leading dynamical equation enforces null wave vector

kµkνηµν = 0
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First order - direct wave solutions

I Define tetrad {k, l, eA} such that

lµlµ = kµkµ = 0 kµeAµ = lµeAµ = 0

kµlµ =− 1 eαAe
β
Bηαβ = δAB

I Leading wave equation implies

δAB∂2
ΘjAB =∂2

Θjll = 0

∂2
ΘjlA =0

I Lorenz gauge not imposed, but compatible with the
results after EFE is calculated

I Compatible with [Blanchet and Damour] Post-Minkowski
leading order in 1/r outgoing waves
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Second order - propagation along null cones

I Null cone propagation at leading order gives simple 1/r̃ radiation
dependence

1

r̃
∂ΘjAB + ∂r̃∂ΘjAB = 0

I Subleading Lorenz gauge condition informs otherwise unconstrained
parts (for instance, the ` = 0, 1 parts not expressible as TT waves)

∇µjµν + kµ∂Θkµν = 0

I Remaining components fix the now nontrivial non-TT
components of kµν :

−1

2
δAB∂2

ΘkAB =−G(1,1)
kk [j]

−1

2
∂2

ΘklA =−G(1,1)
kA [j]

∂2
Θkll =0
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Third order equations - quasistatic j0

I Impose Lorenz gauge on the quasistatic part j0

I Background correction + General wave equation

�j0µν [x̃ν ] +Rµ
σ
ν
ρj0σρ = −

〈
G(2,2)
µν [j, j]

〉
I Solvable via techniques first introduced by [Blanchet and Damour]

I General solution written as integral:

j0 = FPB→0

[
1

K(B)

∫ ∞
r̃

dz̃
S(k)(t̃− z̃)

r̃k
ˆ̃
∂L

(
(z̃ − r̃)B−k+l+2 − (z̃ + r̃)B−k+l+2

r̃

)]
I With some manipulation, we can re-write the retarded solution as a

homogeneous + particular solution

j0,` = ∂̃L
jG` (u)

r̃
+ jH` (u)
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Third order quasistatic - asymptotic evaluation

I Evaluate integral assuming large r̃. Geometric optics construction
gives G(2,2) ∼ r̃−2

jH` =
n̂L
r̃

∫ ∞
0

dz̃

(
1

2
ln

z̃

2r̃
+
∑̀
n=1

1

n

)〈
G(2,2)[j, j]

〉
+O(r̃−2 ln(r̃))

∂̃L
jG` (ũ)

r̃
= ∂̃L

1

r̃Kk

∫ ũ

−∞
ds̃
〈
G(2,2)

〉
(s̃)(ũ− s̃)`

I Scales similarly with ε to outgoing waves - ‘memory’-like effect

I Scaled coordinates x̃ explicitly incorporate the long scale
dependence of the system

I Region of nonlinear source r ∼M/ε⇒ r̃ ∼M
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Third order quasistatic - interaction region matching

I assume r̃ �M

I near-cancellation within integral suppresses solution
I for small r̃

(z̃ − r̃)B−k+`+2 = (z̃ + r̃)B−k+`+2 +O(r̃)

I Scaled coordinate solution proceeds as in [Pound 2015], resulting in

j0,`=0 =− S(2)
` (w̃) + S

(2)
` (w̃) ln(2r̃/ε2)−

∫ ∞
0

dz̃
˙

S
(2)
` (w̃ − z̃) ln(z̃)

j0,`≥0 =− n̂L
`(`+ 1)

I Note that the constant-in-r̃ contributions remain second order
as we take r̃ �M , unlike the leading order wave solution

I We recover the near-zone reasoning from PM that the nonlinearly
sourced quasistatic should be O(ε2)
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Near-horizon (work in progress)
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I Asymptotically plane wave solutions approaching horizon

I Only quasistatic, second-order perturbations for matching to
interaction zone

I Two-Timescale assumption violated near the horizon

I Generally, we’re exploring methods of using adjusted or scaled
coordinate dependence to simplify the near-horizon expansion

I Geometric optics approximation is confounded by exponentially
small {r, t} components ∼ er∗/2M

I No additional separation of scales - leading order solution is
constant in r∗, compared to 1/r dependence in far zone
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Multiscale status report

I Interaction zone computations fairly
well-understood

I Several methods work in concert to form a
globally valid approximation scheme

I Far zone well under control (largest update since
last Capra)

I Open questions and future work for multiscale
I Near horizon - similarities to far zone, but with

confounding scaling details

I resonances - generally introduce powers ε1/2

I second order Kerr ...
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Self-Consistent hybrid construction

I Consider the Two-Timescale form of the metric perturbation
h(n)[ϕA, t̃, xi]

I Construct an equivalent functional of the worldline zµ by evaluating
the instantaneous ‘osculating’ geodesic action-angle variables

I Lorenz gauge condition at the heart of the difficulty - in
Self-Consistent, it determines the motion of the small companion,
and in Two-Timescale, it determines the ˙δM and δ̇a.

I Separate equations of motion for the two distinct (but both valid)
expressions of the worldline

I Exact worldline obeys direct Self-Consistent equation of motion

I Perturbatively expanded worldline obeys re-expanded Self-Consistent

I Consistency is easy to show by summing the orders of the
perturbative worldline

I Finally, the perturbative worldline may be used with the Lorenz
gauge condition in the Two-Timescale expressions to derive the
mass and spin evolution
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Suggested Algorithm for Post-Adiabatic Computation

Worldline
Orbit 

Parameters
Interaction

Metric
Matching

Metric Waves

Adiabatic
Waveform

Post-Adiabatic
Waveform

Computation 
Understood

Computation
Unfinished

Numerics
Required

[Pound,Isoyama,
Yamada,Tanaka]

(In progress)
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