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IMotivation: compact binariés
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Motivation: perturbation theoéry

@ The era of gravitational wave astronomy has dawned

@ Compact binaries are important sources

@ Highly-relativistic small-mass-ratio binaries are not well
suited for post-Newtonian or numerical relativity

@ Perturb metricin
powers of mass-ratio

(L/M)

@ Evolve motion with
perturbed metric
(gravitational self-force)
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Features of EMRI model used here

@ First-order self-force (dissipative and conservative)

@ Spin-curvature interaction (spin-force)

@ Accurate: 7+ digits of force accuracy (track phase to
within ~0.1 radians)

@ Broad range of orbital parameters (high eccentricity)

Other important effects:

¢ Ke””ﬁme (see talk by van de Meent)
o Second—o“elf-force (see talks by Pound and Wardell)



IMlotivation: high eccentricity and LISA

@ Objects enter LISA band with eccentricities up to e=0.8?

@ Past gravitational T
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Numerical tool: metric perturbations

@ Lorenz gauge: IZIhW e QRQ’B h = —1671,,

@ Schwarzschild metric perturbations separable into
tensor spherical harmonic and Fourier modes (I,m,n)

ha(t7,0,0) = 3 hif), () et S0 () ¢

[,m.n.k

@ Solve up to ~30,000 ODE systems (lI,m,n) per orbit

@ Eccentricity and separation range limited by ill-
conditioning problem and computational cost

@ New code developed to handle these problems

Osburn, Forseth, Evans, and Hopper, Phys. Rev. D 90 (2014); 1409.4419



IMletric perturbations and self-foree
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@ Self-force: mode-sum regularization F* = Z {Fr‘éff —(20'+1)A— B — }
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Larger domain, accuracy limitations

@ We have extended the available domain of orbital parameters

(e <=0.82, p <=100)

@ High accuracy at
large eccentricity is
challenging
(~3 digits)

@ How can we
improve accuracy?

Warburton et al. (2012)
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Hybrid method: higher accuracy

Total accumulated orbital phase: ® = kK (ﬁ)_l + K + Ky (%) + -
(u/M = 107°) adiabatic *10°rad post-1-adiabatic =10 rad

@ Goal: compute orbital phase to within ~0.1 radians

@ Requires self-force accuracy < (10?u/M) = 10”7

@ Very hard to achieve 7+ digits at high eccentricity

@ Hybrid method: Use high accuracy flux for adiabatic
correction (secular approx.), GSF for post-1-adiabatic

@ Carefully replace orbit averaged self-force with flux
values computed in RWZ gauge

Osburn, Forseth, Evans, and Hopper, Phys. Rev. D 90 (2014); 1409.4419



Interpolation error
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@ Adiabatic part calculated from | @ Post-1-adiabatic part calculated
accurate RWZ gauge fluxes from Lorenz gauge self-force
@ [Interpolate with data from @ Interpolate with data from
43875 orbits (2054 CPU hours) 9602 orbits (2308 CPU hours)

Osburn, Warburton, and Evans, Phys. Rev. D 93 (2014); 1511.01498



Spin-curvature force

@ Approximation 1: first-order expansion in spin magnitude (S)

@ Approximation 2: Ignore spin-force when calculating self-force

@ Mathisson-Papapetrou-Dixon spin-force:
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Inspirals: osculating elements

@ Choose a set of geodesic constants as orbital elements /A
IA — {6,]9, X0, L, Qa (I)a T}

@ The equations of motion are re-formulated as an initial value

problem for A Pound and Poisson Phys. Rev. D 77 (2008)
028 OI4 _0 u@u% oI _ o
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@ The spin vector is evolved in an ODE system shared with /4
uV,S° =0
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Inspiral with spin-force




Inspiral with spin-force
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Effect of spin on orbital phase
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Waveform generation

@ To calculate the self-force we already solved the Einstein equations

@ Snapshot gravitational wave information readily available

—I— _th — f Z Hlm t, T 2mm(9 )
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@ The C coefficients are amplitudes of Regge-Wheeler master
functions and depend only on shape of orbit (e and p)

@ We calculated and interpolated the Cs over same orbital
parameter space as the self-force

@ Waveforms generated by updating the Cs as the orbit evolves



Effect of spin on waveforms
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Effect of spin on waveforms
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Conclusions and future work

@ |mportant problems for gravitational wave astronomy:
 Extreme/intermediate mass ratio binaries
* High eccentricity
* High accuracy (7+ digits)
e Spin-curvature coupling
@ We accomplish this with the following tools:

* Hybrid (accurate fluxes for adiabatic) self-force code

 Add module for spin-curvature coupling (spin-force)
* Osculating elements code generalized for inclined orbits

@ Future work:

e Kerr background
 Second order perturbation theory



Conserved quantities with spin
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Importance of conservative effects
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Sensitivity test of hybrid self-force
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Evolution of gauge invariant fregs
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Intermediate mass ratio inspiral

e
P o 5x103
M
040+
0.35|-
7 v
A#0 U
T
2V
030 B
(N7 q
14‘ J
LA
\ ":6.»’ ’
h AT —
AN )
"'\' - dissipative
0-25/ —— adiabatic
L R R | p

1 1 1 1 I
7.0 7.5 8.0 8.5 9.0 9.5 10.0




