Progress at second order

Adam Pound

University of Southampton

21 June 2017

Outline

1 Why second order?

- 2 The local problem and a new, highly regular gauge
- 3 The global problem and method of multiple scales
- 4 Application: quasicircular orbits in Schwarzschild

5 Conclusion

Outline

1 Why second order?

- 2 The local problem and a new, highly regular gauge
- 3 The global problem and method of multiple scales
- Application: quasicircular orbits in Schwarzschild

5 Conclusion

Modeling EMRIs

 treat m as source of perturbation of M's metric g_{μν}:

$$\mathbf{g}_{\mu\nu} = g_{\mu\nu} + \epsilon h^1_{\mu\nu} + \epsilon^2 h^2_{\mu\nu} + \dots$$

where $\epsilon \sim m/M$

represent motion of m via worldline z^{μ} satisfying

$$\frac{D^2 z^\mu}{d\tau^2} = \epsilon F_1^\mu + \epsilon^2 F_2^\mu + \dots$$

- \blacksquare force is small; inspiral occurs very slowly, on time scale $\tau \sim 1/\epsilon$
- suppose we neglect F_2^{μ} ; leads to error $\delta\left(\frac{D^2 z^{\mu}}{d\tau^2}\right) \sim \epsilon^2$ \Rightarrow error in position $\delta z^{\mu} \sim \epsilon^2 \tau^2$
 - \Rightarrow after inspiral time $\tau \sim 1/\epsilon$, error $\delta z^{\mu} \sim 1$
- so accurately describing orbital evolution requires second order

Improving models of IMRIs and similar-mass binaries

- at interface between models, SF data can fix high-order PN terms and calibrate EOB
- already done at first order
- second-order results will further improve these models
- also can use SF to *directly* model IMRIs

Improving models of IMRIs and similar-mass binaries

- at interface between models, SF data can fix high-order PN terms and calibrate EOB
- already done at first order
- second-order results will further improve these models
- also can use SF to *directly* model IMRIs

Outline

1 Why second order?

2 The local problem and a new, highly regular gauge

3 The global problem and method of multiple scales

4 Application: quasicircular orbits in Schwarzschild

5 Conclusion

What is the problem we want to solve?

A small, compact object of mass and size $m\sim l\sim\epsilon$ moves through (and influences) spacetime

 Option 1: tackle the problem directly, treat the body as finite sized, deal with its internal composition

Need to deal with internal dynamics and strong fields near object

What is the problem we want to solve?

A small, compact object of mass and size $m\sim l\sim\epsilon$ moves through (and influences) spacetime

■ Option 2: restrict the problem to distances s ≫ m from the object, treat m as source of perturbation of external background g_{µν}:

$$\mathbf{g}_{\mu\nu} = g_{\mu\nu} + \epsilon h^1_{\mu\nu} + \epsilon^2 h^2_{\mu\nu} + \dots$$

This is a free boundary value problem

Metric here must agree with metric outside a small compact object; and "here" moves in response to field

What is the problem we want to solve?

A small, compact object of mass and size $m\sim l\sim\epsilon$ moves through (and influences) spacetime

Option 3: treat the body as a point particle

- takes behavior of fields outside object and extends it down to a fictitious worldline
- so $h^1_{\mu\nu} \sim 1/s$ (s =distance from object)
- ▶ second-order field equation $\delta G[h^2] \sim -\delta^2 G[h^1] \sim (\partial h^1)^2 \sim 1/s^4$

----no solution unless we restrict it to points off worldline, which is equivalent to FBVP

Distributionally ill defined source appears here!

What is the problem we want to solve?

A small, compact object of mass and size $m\sim l\sim\epsilon$ moves through (and influences) spacetime

- Option 4: transform the FBVP into an effective problem using a puncture, a local approximation to the field outside the object
- This will be the method emphasized here
- But we'll see how the idea of a point particle can be sustained in a *highly regular gauge*

Matched asymptotic expansions

M

• *outer expansion*: in external universe, treat field of *M* as background

- inner expansion: in inner region, treat field of m as background
- in buffer region, feed information from inner expansion into outer expansion

The inner expansion

Zoom in on object

- \blacksquare use scaled distance $\tilde{s}\sim s/\epsilon$ to keep size of object fixed, send other distances to infinity as $\epsilon\to 0$
- unperturbed object defines background spacetime $g_{I\mu\nu}$ in inner expansion
- \blacksquare buffer region at asymptotic infinity $s\gg m$
 - \Rightarrow can define object's multipole moments as those of $g_{I\mu
 u}$

First and second order solutions

Given only the existence of inner expansion, local solution in Lorenz gauge found to be:

First order

- $\bullet \ h^1_{\mu\nu} = h^{\rm S1}_{\mu\nu} + h^{\rm R1}_{\mu\nu}$
- $\blacksquare \ h_{\mu\nu}^{\rm S1} \sim 1/s + O(s^0)$ defined by mass monopole m

• $h^{\rm R1}_{\mu\nu}$ is undetermined homogenous solution regular at s=0

Second order

•
$$h_{\mu\nu}^2 = h_{\mu\nu}^{S2} + h_{\mu\nu}^{R2}$$

• $h_{\mu\nu}^{S2} \sim 1/s^2 + O(1/s)$ defined by
• monopole correction δm
• mass dipole M^{μ}

3 spin dipole S^p

Perturbed position at first order [Mino et al, Gralla-Wald, Pound]

Reminder: mass dipole moment M^i :

small displacement of center of mass from origin of coordinates

• e.g., Newtonian field
$$\frac{m}{|x^i - \delta z^i|} \approx \frac{m}{|x^i|} + \frac{m\delta z^j n_j}{|x^i|^2} \Rightarrow M^i = m\delta z^i$$

Definition of object's worldline:

- mass dipole is integral over small sphere:

$$M^{i} = \frac{3}{8\pi} \lim_{s \to 0} \oint h_{\mu\nu}^{2} u^{\mu} u^{\nu} n^{i} dS$$

• equation of motion of z^{μ} : whatever ensures $M^{\mu} \equiv 0$

Perturbed position at first order [Mino et al, Gralla-Wald, Pound]

Reminder: mass dipole moment M^i :

small displacement of center of mass from origin of coordinates

• e.g., Newtonian field
$$\frac{m}{|x^i - \delta z^i|} \approx \frac{m}{|x^i|} + \frac{m\delta z^j n_j}{|x^i|^2} \Rightarrow M^i = m\delta z^i$$

Definition of object's worldline:

- mass dipole is integral over small sphere:
 - $M^i = \frac{3}{8\pi} \lim_{s \to 0} \oint h_{\mu\nu}^2 u^\mu u^\nu n^i dS$

• equation of motion of z^{μ} : whatever ensures $M^{\mu} \equiv 0$

Perturbed position at second order [Pound]

Problem:

- mass dipole moment defined for asymptotically flat spacetimes
- beyond zeroth order, inner expansion is not asymptotically flat

Solution:

- start in "rest gauge" centered on z^µ
- demand that transformation to practical (e.g., Lorenz) gauge does not move z^µ
- \blacksquare i.e., insist $\Delta z^{\mu}=0$
- ensures worldline in the two gauges is the same

0th-, 1st-, and 2nd-order equations of motion

Oth order, arbitrary object: $\frac{D^2 z^{\mu}}{d\tau^2} = O(m)$ (geodesic motion in $g_{\mu\nu}$)

1st order, arbitrary object [MiSaTaQuWa]:

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left(g^{\alpha\delta} + u^{\alpha} u^{\delta} \right) \left(2h^{\mathrm{R1}}_{\delta\beta;\gamma} - h^{\mathrm{R1}}_{\beta\gamma;\delta} \right) u^{\beta} u^{\gamma} + \frac{1}{2m} R^{\alpha}{}_{\beta\gamma\delta} u^{\beta} S^{\gamma\delta} + O(m^2)$$

(motion of spinning test body in $g_{\mu\nu} + h_{\mu\nu}^{\rm R1}$)

2nd-order, nonspinning, spherical object [Pound]:

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left(g^{\mu\nu} + u^{\mu} u^{\nu} \right) \left(g_{\nu}{}^{\rho} - h_{\nu}^{\mathrm{R}\rho} \right) \left(2h_{\rho\sigma;\lambda}^{\mathrm{R}} - h_{\sigma\lambda;\rho}^{\mathrm{R}} \right) u^{\sigma} u^{\lambda} + O(m^3)$$

(geodesic motion in $g_{\mu\nu} + h^{\rm R}_{\mu\nu}$)

 still need 2nd-order equation incorporating spin & quadrupole moments

0th-, 1st-, and 2nd-order equations of motion

Oth order, arbitrary object: $\frac{D^2 z^{\mu}}{d\tau^2} = O(m)$ (geodesic motion in $g_{\mu\nu}$)

1st order, arbitrary object [MiSaTaQuWa]:

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left(g^{\alpha\delta} + u^{\alpha} u^{\delta} \right) \left(2h^{\mathrm{R1}}_{\delta\beta;\gamma} - h^{\mathrm{R1}}_{\beta\gamma;\delta} \right) u^{\beta} u^{\gamma} + \frac{1}{2m} R^{\alpha}{}_{\beta\gamma\delta} u^{\beta} S^{\gamma\delta} + O(m^2)$$

(motion of spinning test body in $g_{\mu\nu} + h_{\mu\nu}^{\rm R1}$)

2nd-order, nonspinning, spherical object [Pound]:

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left(g^{\mu\nu} + u^{\mu} u^{\nu} \right) \left(g_{\nu}{}^{\rho} - h_{\nu}^{\mathrm{R}\rho} \right) \left(2h_{\rho\sigma;\lambda}^{\mathrm{R}} - h_{\sigma\lambda;\rho}^{\mathrm{R}} \right) u^{\sigma} u^{\lambda} + O(m^3)$$

(geodesic motion in $g_{\mu\nu} + h^{\rm R}_{\mu\nu}$)

 still need 2nd-order equation incorporating spin & quadrupole moments

0th-, 1st-, and 2nd-order equations of motion

Oth order, arbitrary object: $\frac{D^2 z^{\mu}}{d\tau^2} = O(m)$ (geodesic motion in $g_{\mu\nu}$)

1st order, arbitrary object [MiSaTaQuWa]:

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left(g^{\alpha\delta} + u^{\alpha} u^{\delta} \right) \left(2h^{\mathrm{R1}}_{\delta\beta;\gamma} - h^{\mathrm{R1}}_{\beta\gamma;\delta} \right) u^{\beta} u^{\gamma} + \frac{1}{2m} R^{\alpha}{}_{\beta\gamma\delta} u^{\beta} S^{\gamma\delta} + O(m^2)$$

(motion of spinning test body in $g_{\mu\nu} + h_{\mu\nu}^{\rm R1}$)

2nd-order, nonspinning, spherical object [Pound]:

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left(g^{\mu\nu} + u^{\mu} u^{\nu} \right) \left(g_{\nu}{}^{\rho} - h_{\nu}^{\mathrm{R}\rho} \right) \left(2h_{\rho\sigma;\lambda}^{\mathrm{R}} - h_{\sigma\lambda;\rho}^{\mathrm{R}} \right) u^{\sigma} u^{\lambda} + O(m^3)$$

(geodesic motion in $g_{\mu\nu} + h_{\mu\nu}^{\rm R}$)

still need 2nd-order equation incorporating spin & quadrupole moments

0th-, 1st-, and 2nd-order equations of motion

Oth order, arbitrary object: $\frac{D^2 z^{\mu}}{d\tau^2} = O(m)$ (geodesic motion in $g_{\mu\nu}$)

1st order, arbitrary object [MiSaTaQuWa]:

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left(g^{\alpha\delta} + u^{\alpha} u^{\delta} \right) \left(2h^{\mathrm{R1}}_{\delta\beta;\gamma} - h^{\mathrm{R1}}_{\beta\gamma;\delta} \right) u^{\beta} u^{\gamma} + \frac{1}{2m} R^{\alpha}{}_{\beta\gamma\delta} u^{\beta} S^{\gamma\delta} + O(m^2)$$

(motion of spinning test body in $g_{\mu\nu} + h_{\mu\nu}^{\rm R1}$)

2nd-order, nonspinning, spherical object [Pound]:

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left(g^{\mu\nu} + u^{\mu} u^{\nu} \right) \left(g_{\nu}{}^{\rho} - h_{\nu}^{\mathrm{R}\rho} \right) \left(2h_{\rho\sigma;\lambda}^{\mathrm{R}} - h_{\sigma\lambda;\rho}^{\mathrm{R}} \right) u^{\sigma} u^{\lambda} + O(m^3)$$

(geodesic motion in $g_{\mu\nu} + h^{\rm R}_{\mu\nu}$)

 still need 2nd-order equation incorporating spin & quadrupole moments

Point particles and punctures

replace "self-field" with "singular field"

at 1st order, can use this to *replace object with a point particle*:

$$T^{1}_{\mu\nu} := \frac{1}{8\pi} \delta G_{\mu\nu}[h^{1}]$$

Point particles and punctures

replace "self-field" with "singular field"

at 1st order, can use this to *replace object with a point particle*:

$$T^{1}_{\mu\nu} := \frac{1}{8\pi} \delta G_{\mu\nu}[h^{1}]$$

Point particles and punctures

replace "self-field" with "singular field"

at 1st order, can use this to *replace object with a point particle*:

$$T^{1}_{\mu\nu} := \frac{1}{8\pi} \delta G_{\mu\nu}[h^{1}]$$

Point particles and punctures

replace "self-field" with "singular field"

• at 1st order, can use this to *replace object with a point particle*:

$$T^{1}_{\mu\nu} := \frac{1}{8\pi} \delta G_{\mu\nu}[h^{1}]$$

Puncture scheme

- \blacksquare use a local expansion of $h^{\rm Sn}_{\mu\nu}$ as a "puncture" $h^{\mathcal{P}n}_{\mu\nu}$ that moves on γ
- solve field equations for $h^n_{\mu\nu}$ and $h^{\mathcal{R}n}_{\mu\nu} := h^n_{\mu\nu} h^{\mathcal{P}n}_{\mu\nu} \approx h^{\mathrm{R}n}_{\mu\nu}$
- move the puncture with eqn of motion (using $\partial h_{\mu\nu}^{\mathcal{R}n}|_{\gamma} = \partial h_{\mu\nu}^{\mathrm{R}n}|_{\gamma}$)

Metric in a lightcone gauge

- The "rest gauge" metric is derived from an inner expansion —specifically, the metric of a tidally perturbed BH in Eddington-Finkelstein coordinates + lightcone gauge
- Exact Schwarzschild metric in EF coords is linear in m
- Translates to a highly regular metric perturbation in outer expansion: $h_{\mu\nu}^2 \sim m^2 s^0 \mathcal{E} + ms \delta \mathcal{E}$
- Can define singular and regular fields

$$\begin{split} h^{\rm S1}_{\mu\nu} &\sim \frac{m}{s} \\ h^{\rm S2}_{\mu\nu} &\sim m^2 s^0 + m s \delta \mathcal{E} \\ h^{\rm R1}_{\mu\nu} &\sim s^2 \delta \mathcal{E} \\ h^{\rm R2}_{\mu\nu} &\sim s^2 \delta^2 \mathcal{E} \end{split}$$

• $g_{\mu
u} + h^{
m R}_{\mu
u}$ is a vacuum metric, and motion is geodesic in it

Motion in a highly regular gauge [Pound 2017]

- \blacksquare Transforming to a generic gauge such as Lorenz, we end up with the strong, $1/s^2$ divergences
- But we can keep the gauge highly regular by performing a smooth transformation (subject to worldline-preserving condition ξ^μ|_γ = 0):

$$\begin{split} \Delta h_{\alpha\beta}^{\mathrm{R}1} &= \mathcal{L}_{\xi_1} g_{\alpha\beta} \\ \Delta h_{\alpha\beta}^{\mathrm{S}1} &= 0 \\ \Delta h_{\alpha\beta}^{\mathrm{R}2} &= \mathcal{L}_{\xi_2} g_{\alpha\beta} + \mathcal{L}_{\xi_1} h_{\alpha\beta}^{\mathrm{R}1} + \frac{1}{2} \mathcal{L}_{\xi_1}^2 g_{\alpha\beta} \\ \Delta h_{\alpha\beta}^{\mathrm{S}2} &= \mathcal{L}_{\xi_1} h_{\alpha\beta}^{\mathrm{S}1} \end{split}$$

This ensures $g_{\mu\nu} + h^{\rm R}_{\mu\nu}$ remains a vacuum metric and that motion remains geodesic in it

Point particles and punctures in a highly regular gauge

- \blacksquare In the highly regular gauge, $h^{
 m S2}_{\mu
 u}\sim rac{mh^{
 m R1}}{s}+m^2s^0+\dots$
- The second-order field equation becomes

$$\delta G_{\mu\nu}[h^{\mathcal{R}2}] = -\delta^2 G_{\mu\nu}[h^1] - \delta G_{\mu\nu}[h^{\mathcal{P}2}]$$

where $h_{\mu\nu}^{\mathcal{R}2}$ can be in any desired gauge

But $\delta^2 G_{\mu\nu}$ now well defined as a distribution, so we can write a distributional equation for the retarded field:

$$\delta G_{\mu\nu}[h^2] = -\delta^2 G_{\mu\nu}[h^1] + 8\pi T_{\mu\nu}^2$$

Here $T^2_{\mu\nu}$ defined from $\delta G_{\mu\nu}[h^2]$, not from expansion of exact point-particle stress-energy

—I haven't yet examined its form, but it can *define* what we mean by the second-order stress-energy of a point particle

Benefits of working in highly regular gauge

- Eliminates most singular part of source and associated computational expense
- Can solve for retarded field directly, without a puncture
- Can use mode-sum regularization?
- Can eliminate troublesome singularities in EFT approach?
- Can express singular and regular fields in terms of Green's functions?
- Since the nondistributional singularity can be eliminated with a gauge transformation, invariant field equations (e.g., second-order Teukolsky) should be free of it

Outline

Why second order?

2 The local problem and a new, highly regular gauge

3 The global problem and method of multiple scales

4 Application: quasicircular orbits in Schwarzschild

5 Conclusion

Solving the perturbed Einstein globally

solving the local problem told us how to replace the small object with a moving puncture in the field equations:

$$\begin{split} E_{\mu\nu}[h^{\mathcal{R}1}] &= -E_{\mu\nu}[h^{\mathcal{P}1}] \quad \text{inside } \Gamma \\ E_{\mu\nu}[h^1] &= 0 \quad \text{outside } \Gamma \end{split}$$

$$\begin{split} E_{\mu\nu}[h^{\mathcal{R}2}] &= \delta^2 R_{\mu\nu}[h^1,h^1] - E_{\mu\nu}[h^{\mathcal{P}2}] & \text{inside } \Gamma \\ E_{\mu\nu}[h^2] &= \delta^2 R_{\mu\nu}[h^1,h^1] & \text{outside } \Gamma \end{split}$$

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} (g^{\mu\nu} + u^{\mu} u^{\nu}) (g_{\nu}{}^{\delta} - h_{\nu}^{\mathcal{R}\delta}) (2h_{\delta\beta;\gamma}^{\mathcal{R}} - h_{\beta\gamma;\delta}^{\mathcal{R}}) u^{\beta} u^{\gamma}$$

where Γ is a tube around z^{μ} , $E_{\mu\nu}[h] \sim \Box h_{\mu\nu}$, $h_{\mu\nu}^{\mathcal{P}n} \approx h_{\mu\nu}^{Sn}$, $h_{\mu\nu}^{\mathcal{R}n} = h_{\mu\nu}^n - h_{\mu\nu}^{\mathcal{P}n}$

the global problem: how do we solve these equations in practice?

Solving the perturbed Einstein globally

solving the local problem told us how to replace the small object with a moving puncture in the field equations:

$$\begin{split} E_{\mu\nu}[h^{\mathcal{R}1}] &= -E_{\mu\nu}[h^{\mathcal{P}1}] \quad \text{inside } \Gamma \\ E_{\mu\nu}[h^1] &= 0 \quad \text{outside } \Gamma \end{split}$$

$$\begin{split} E_{\mu\nu}[h^{\mathcal{R}2}] &= \delta^2 R_{\mu\nu}[h^1,h^1] - E_{\mu\nu}[h^{\mathcal{P}2}] & \text{inside } \Gamma \\ E_{\mu\nu}[h^2] &= \delta^2 R_{\mu\nu}[h^1,h^1] & \text{outside } \Gamma \end{split}$$

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} (g^{\mu\nu} + u^{\mu} u^{\nu}) (g_{\nu}{}^{\delta} - h_{\nu}^{\mathcal{R}\delta}) (2h^{\mathcal{R}}_{\delta\beta;\gamma} - h^{\mathcal{R}}_{\beta\gamma;\delta}) u^{\beta} u^{\gamma}$$

where Γ is a tube around z^{μ} , $E_{\mu\nu}[h] \sim \Box h_{\mu\nu}$, $h_{\mu\nu}^{\mathcal{P}n} \approx h_{\mu\nu}^{Sn}$, $h_{\mu\nu}^{\mathcal{R}n} = h_{\mu\nu}^n - h_{\mu\nu}^{\mathcal{P}n}$ = the global problem: how do we solve these equations in practice?

Typical calculation at first order

- approximate the source orbit as a bound geodesic
- $\hfill \$ impose outgoing-wave BCs at \mathcal{I}^+ and \mathcal{H}^+
- solve field equation numerically, compute self-force from solution
- system radiates forever; at any given time, BH has already absorbed infinite energy
- but on short sections of time the approximation is accurate
- breaks down on *dephasing* time ~ $1/\sqrt{\epsilon}$, when $|z^{\mu} - z_0^{\mu}| \sim M$

Typical calculation at first order

- approximate the source orbit as a bound geodesic
- $\hfill \mbox{ impose outgoing-wave BCs at } {\mathcal I}^+$ and ${\mathcal H}^+$
- solve field equation numerically, compute self-force from solution
- system radiates forever; at any given time, BH has already absorbed infinite energy
- but on short sections of time the approximation is accurate
- breaks down on *dephasing* $time \sim 1/\sqrt{\epsilon}$, when $|z^{\mu} - z_0^{\mu}| \sim M$

- suppose we try to use "typical" $h^1_{\mu\nu}$ to construct source for $h^2_{\mu\nu}$
- because $|z^{\mu} z_{0}^{\mu}|$ blows up with time, $h_{\mu\nu}^{2}$ does likewise
- because $h^1_{\mu\nu}$ contains outgoing waves at all past times, the source $\delta^2 R_{\mu\nu} [h^1]$ decays too slowly, and *its retarded integral does not exist*
- instead, we must construct a uniform approximation
 - $h^1_{\mu\nu}$ must include evolution of orbit
 - radiation must decay to zero in infinite past

- suppose we try to use "typical" $h^1_{\mu\nu}$ to construct source for $h^2_{\mu\nu}$
- because $|z^{\mu} z_{0}^{\mu}|$ blows up with time, $h_{\mu\nu}^{2}$ does likewise
- because $h^1_{\mu\nu}$ contains outgoing waves at all past times, the source $\delta^2 R_{\mu\nu} [h^1]$ decays too slowly, and *its retarded integral does not exist*
- instead, we must construct a uniform approximation
 - $h^1_{\mu\nu}$ must include evolution of orbit
 - radiation must decay to zero in infinite past

- suppose we try to use "typical" $h^1_{\mu\nu}$ to construct source for $h^2_{\mu\nu}$
- because $|z^{\mu} z_{0}^{\mu}|$ blows up with time, $h_{\mu\nu}^{2}$ does likewise
- because $h^1_{\mu\nu}$ contains outgoing waves at all past times, the source $\delta^2 R_{\mu\nu} [h^1]$ decays too slowly, and *its retarded integral does not exist*
- instead, we must construct a uniform approximation
 - $h^1_{\mu\nu}$ must include evolution of orbit
 - radiation must decay to zero in infinite past

- suppose we try to use "typical" $h^1_{\mu\nu}$ to construct source for $h^2_{\mu\nu}$
- because $|z^{\mu} z_{0}^{\mu}|$ blows up with time, $h_{\mu\nu}^{2}$ does likewise
- because $h^1_{\mu\nu}$ contains outgoing waves at all past times, the source $\delta^2 R_{\mu\nu} [h^1]$ decays too slowly, and *its retarded integral does not exist*
- instead, we must construct a uniform approximation
 - $h^1_{\mu\nu}$ must include evolution of orbit
 - radiation must decay to zero in infinite past

Resolutions of the infrared problem

Option 1

- solve field equations and equation of motion self-consistently in the time domain
- problems:
 - limited accuracy
 - gauge instabilities
 - difficult to accurately account for growing BH mass (see Moxon's talk)

Option 2:

- again use matched expansions: different expansions in different regions
- advantages:
 - allows calculations in frequency domain; high accuracy
 - no instabilities
 - better control over behavior in each region, easier to impose correct initial data

Matched expansions [Pound, Moxon, Flanagan, Hinderer, Yamada, Isoyama, Tanaka]

Multiscale expansion

 multiscale expansion: expand orbital parameters and fields as

$$J = J_0(\tilde{t}) + \epsilon J_1(\tilde{t}) + \dots$$
$$h^n_{\mu\nu} \sim \sum_{kk'} h^n_{kk'}(\tilde{t}) e^{-ikq_r(\tilde{t}) - ik'q_\phi(\tilde{t})}$$

where $(J,\,q)$ are action-angle variables for $z^{\mu},$ and $\tilde{t}\sim\epsilon t$ is a "slow time"

 solve for hⁿ_{kk'} at fixed t̃ with standard frequency-domain techniques

Get boundary conditions from

- post-Minkowski expansion: expand $h_{\mu\nu}^n$ in powers of M
- \blacksquare near-horizon expansion: expand $h^n_{\mu\nu}$ in powers of gravitational potential near horizon

Outline

1 Why second order?

- 2 The local problem and a new, highly regular gauge
- 3 The global problem and method of multiple scales
- Application: quasicircular orbits in Schwarzschild

5 Conclusion

Multiscale expansion of the worldline:

- radius $r_p = r_0(\tilde{t}) + \epsilon r_1(\tilde{t}) + \dots$
- frequency $O_{1}(\tilde{i}) + O_{2}(\tilde{i}) + O_{3}(\tilde{i})$

$$\Omega = \Omega_0(t) + \epsilon \Omega_1(t) + \dots$$
• orbital phase $\phi = -\frac{1}{2} \int \Omega dt$

• orbital phase
$$\phi_p = \frac{1}{\epsilon} \int \Omega dt$$

Multiscale expansion of the field:

$$h_{\mu\nu}^n = \sum_{ilm} h_{ilm}^n(\tilde{t},r) e^{-im\phi_p(\tilde{t})} Y_{\mu\nu}^{ilm}$$

Multiscale expansion of the worldline:

- radius $r_p = r_0(\tilde{t}) + \epsilon r_1(\tilde{t}) + \dots$
- frequency $\Omega = \Omega_0(\tilde{t}) + \epsilon \Omega_1(\tilde{t}) + \dots$

$$\blacktriangleright$$
 orbital phase $\phi_p = \frac{1}{\epsilon} \int \Omega d\tilde{t}$

Multiscale expansion of the field:

$$h_{\mu\nu}^{n} = \sum_{ilm} h_{ilm}^{n}(\tilde{t}, r) e^{-im\phi_{p}(\tilde{t})} Y_{\mu\nu}^{ilm}$$

Multiscale expansion of the worldline:

- radius $r_p = r_0(\tilde{t}) + \epsilon r_1(\tilde{t}) + \dots$
- frequency $\Omega = \Omega_0(\tilde{t}) + \epsilon \Omega_1(\tilde{t}) + \dots$

• orbital phase
$$\phi_p = \frac{1}{\epsilon} \int \Omega d\tilde{t}$$

Multiscale expansion of the field:

$$h_{\mu\nu}^{n} = \sum_{ilm} h_{ilm}^{n}(\tilde{t}, r) e^{-im\phi_{p}(\tilde{t})} Y_{\mu\nu}^{ilm}$$

Multiscale expansion of the worldline:

- radius $r_p = r_0(\tilde{t}) + \epsilon r_1(\tilde{t}) + \dots$
- frequency $\Omega = \Omega_0(\tilde{t}) + \epsilon \Omega_1(\tilde{t}) + \dots$

• orbital phase
$$\phi_p = \frac{1}{\epsilon} \int \Omega d\tilde{t}$$

Multiscale expansion of the field:

$$h^n_{\mu\nu} = \sum_{ilm} h^n_{ilm}(\tilde{t},r) e^{-im\phi_p(\tilde{t})} Y^{ilm}_{\mu\nu}$$

Quasicircular orbits in Schwarzschild [Pound, Wardell, Warburton, Miller, Barack]

Multiscale expansion of the worldline:

- radius $r_p = r_0(\tilde{t}) + \epsilon r_1(\tilde{t}) + \dots$
- frequency $\Omega = \Omega_0(\tilde{t}) + \epsilon \Omega_1(\tilde{t}) + \dots$

• orbital phase
$$\phi_p = \frac{1}{\epsilon} \int \Omega d\tilde{t}$$

Multiscale expansion of the field:

$$h^n_{\mu\nu} = \sum_{ilm} h^n_{ilm}(\tilde{t},r) e^{-im\phi_p(\tilde{t})} Y^{ilm}_{\mu\nu}$$

Quasicircular orbits in Schwarzschild [Pound, Wardell, Warburton, Miller, Barack]

Multiscale expansion of the worldline:

- radius $r_p = r_0(\tilde{t}) + \epsilon r_1(\tilde{t}) + \dots$
- frequency $\Omega = \Omega_0(\tilde{t}) + \epsilon \Omega_1(\tilde{t}) + \dots$

• orbital phase
$$\phi_p = \frac{1}{\epsilon} \int \Omega d\tilde{t}$$

Multiscale expansion of the field:

$$h_{\mu\nu}^n = \sum_{ilm} h_{ilm}^n(\tilde{t},r) e^{-im\phi_p(\tilde{t})} Y_{\mu\nu}^{ilm}$$

$$E_{\mu
u}[h^{\mathcal{R}1}] = -E_{\mu
u}[h^{\mathcal{P}1}]$$
 inside Γ
 $E_{\mu
u}[h^1] = 0$ outside Γ

$$\begin{split} E_{\mu\nu}[h^{\mathcal{R}2}] &= \delta^2 R_{\mu\nu}[h^1, h^1] - E_{\mu\nu}[h^{\mathcal{P}2}] & \text{inside } \Gamma \\ E_{\mu\nu}[h^2] &= \delta^2 R_{\mu\nu}[h^1, h^1] & \text{outside } \Gamma \end{split}$$

$$\frac{D^2 z^\mu}{d\tau^2} = \epsilon F_1^\mu + \epsilon^2 F_2^\mu$$

$$\begin{split} h_{\mu\nu}^{\mathcal{P}1} &\sim \frac{m}{|x^{\alpha} - z^{\alpha}|} \\ h_{\mu\nu}^{\mathcal{P}2} &\sim \frac{m^2}{|x^{\alpha} - z^{\alpha}|^2} + \frac{\delta m + mh^{\mathcal{R}1}}{|x^{\alpha} - z^{\alpha}|} \end{split}$$

$$\begin{split} E^0_{ilm}[h^{\mathcal{R}1}_{jlm}] &= -E^0_{ilm}[h^{\mathcal{P}1}_{jlm}] \quad \text{inside } \Gamma \\ E^0_{ilm}[h^1_{jlm}] &= 0 \quad \text{outside } \Gamma \end{split}$$

$$\begin{split} E_{\mu\nu}[h^{\mathcal{R}2}] &= \delta^2 R_{\mu\nu}[h^1, h^1] - E_{\mu\nu}[h^{\mathcal{P}2}] & \text{inside } \Gamma \\ E_{\mu\nu}[h^2] &= \delta^2 R_{\mu\nu}[h^1, h^1] & \text{outside } \Gamma \end{split}$$

$$\frac{D^2 z^\mu}{d\tau^2} = \epsilon F_1^\mu + \epsilon^2 F_2^\mu$$

$$\begin{split} h_{\mu\nu}^{\mathcal{P}1} &\sim \frac{m}{|x^{\alpha} - z^{\alpha}|} \\ h_{\mu\nu}^{\mathcal{P}2} &\sim \frac{m^2}{|x^{\alpha} - z^{\alpha}|^2} + \frac{\delta m + mh^{\mathcal{R}1}}{|x^{\alpha} - z^{\alpha}|} \end{split}$$

$$\begin{split} E^0_{ilm}[h^{\mathcal{R}1}_{jlm}] &= -E^0_{ilm}[h^{\mathcal{P}1}_{jlm}] \quad \text{inside } \Gamma \\ E^0_{ilm}[h^1_{jlm}] &= 0 \quad \text{outside } \Gamma \end{split}$$

$$\begin{split} E^0_{ilm}[h^{\mathcal{R}2}_{jlm}] &= \delta^2 R^0_{ilm}[h^1_{jl'm'}, h^1_{kl''m''}] - E^0_{ilm}[h^{\mathcal{P}2}_{jlm}] - E^1_{ilm}[h^1_{jlm}] \quad \text{inside } \Gamma \\ E^0_{ilm}[h^2_{jlm}] &= \delta^2 R^0_{ilm}[h^1_{jl'm'}, h^1_{kl''m''}] - E^1_{ilm}[h^1_{jlm}] \quad \text{outside } \Gamma \end{split}$$

$$\frac{D^2 z^\mu}{d\tau^2} = \epsilon F_1^\mu + \epsilon^2 F_2^\mu$$

$$\begin{split} h_{\mu\nu}^{\mathcal{P}1} &\sim \frac{m}{|x^{\alpha} - z^{\alpha}|} \\ h_{\mu\nu}^{\mathcal{P}2} &\sim \frac{m^2}{|x^{\alpha} - z^{\alpha}|^2} + \frac{\delta m + mh^{\mathcal{R}1}}{|x^{\alpha} - z^{\alpha}|} \end{split}$$

$$\begin{split} E^0_{ilm}[h^{\mathcal{R}1}_{jlm}] &= -E^0_{ilm}[h^{\mathcal{P}1}_{jlm}] \quad \text{inside } \Gamma \\ E^0_{ilm}[h^1_{jlm}] &= 0 \quad \text{outside } \Gamma \end{split}$$

$$\begin{split} E^0_{ilm}[h^{\mathcal{R}2}_{jlm}] &= \delta^2 R^0_{ilm}[h^1_{jl'm'}, h^1_{kl''m''}] - E^0_{ilm}[h^{\mathcal{P}2}_{jlm}] - E^1_{ilm}[h^1_{jlm}] \quad \text{inside } \Gamma \\ E^0_{ilm}[h^2_{jlm}] &= \delta^2 R^0_{ilm}[h^1_{jl'm'}, h^1_{kl''m''}] - E^1_{ilm}[h^1_{jlm}] \quad \text{outside } \Gamma \end{split}$$

$$\frac{dr_0}{d\tilde{t}} \propto F_1^t$$
$$r_1 \propto F_1^r$$

$$\begin{split} h_{\mu\nu}^{\mathcal{P}1} &\sim \frac{m}{|x^{\alpha} - z^{\alpha}|} \\ h_{\mu\nu}^{\mathcal{P}2} &\sim \frac{m^2}{|x^{\alpha} - z^{\alpha}|^2} + \frac{\delta m + mh^{\mathcal{R}1}}{|x^{\alpha} - z^{\alpha}|} \end{split}$$

$$\begin{split} E^0_{ilm}[h^{\mathcal{R}1}_{jlm}] &= -E^0_{ilm}[h^{\mathcal{P}1}_{jlm}] \quad \text{inside } \Gamma \\ E^0_{ilm}[h^1_{jlm}] &= 0 \quad \text{outside } \Gamma \end{split}$$

$$\begin{split} E^0_{ilm}[h^{\mathcal{R}2}_{jlm}] &= \delta^2 R^0_{ilm}[h^1_{jl'm'}, h^1_{kl''m''}] - E^0_{ilm}[h^{\mathcal{P}2}_{jlm}] - E^1_{ilm}[h^1_{jlm}] \quad \text{inside } \Gamma \\ E^0_{ilm}[h^2_{jlm}] &= \delta^2 R^0_{ilm}[h^1_{jl'm'}, h^1_{kl''m''}] - E^1_{ilm}[h^1_{jlm}] \quad \text{outside } \Gamma \end{split}$$

$$\frac{dr_0}{d\tilde{t}} \propto F_1^t$$
$$r_1 \propto F_1^r$$

$$\begin{split} h_{ilm}^{\mathcal{P}1} &\sim m |r - r_0| \\ h_{ilm}^{\mathcal{P}2} &\sim m^2 \log |r - r_0| + (\delta m + m h^{\mathcal{R}1} + r_1 + \dot{r}_0) |r - r_0| \end{split}$$

Boundary conditions from PM/Near-Horizon expansions

At large r, adapt Blanchet-Damour PM methods

- The source behaves as $\delta^2 R^0_{il0} \sim \frac{S_{il0}}{r^2}$
- For l = 0, 2, hereditary terms arise:

$$h_{il0}^2 \sim \ln(r/\epsilon)S_{il0} + \int_{-\infty}^0 \frac{d}{d\tilde{t}}S_{il0}(\tilde{t} - \epsilon r + \tilde{z})\ln\tilde{z}\,d\tilde{z}$$

At $r \approx 2M$, similar iteration using near-horizon retarded Green's function (Semi)hereditary terms arise:

$$h_{il0}^2 \sim (r-2M)\delta^2 R_{il0} + \int_{-\infty}^0 \delta^2 R_{il0} (\tilde{t} + \epsilon r + \tilde{z}) d\tilde{z}$$

We use these asymptotic approximations as punctures $h_{il0}^{\infty \mathcal{P}}$ and $h_{il0}^{\mathcal{HP}}$ at infinity/horizon (actually, we currently use ad hoc $h_{il0}^{\mathcal{HP}}$!)

Specialization to $\ell = 0$

Advantages?

- Clean(?) split into dissipative and conservative sectors
 - Dissipative sector: h_{tr}^2 , $\partial_{\bar{t}}h_{tt}^1$, $\partial_{\bar{t}}h_{rr}^1$, $g^{\mu\nu}\partial_{\bar{t}}h_{\mu\nu}^1$, \dot{r}_0
 - Conservative sector: h_{tt}^2 , h_{rr}^2 , $g^{\mu\nu}h_{\mu\nu}^2$, r_1
- First-order solution known analytically

Things to mind:

- First-order perturbation must include slowly varying correction to BH mass
- \blacksquare We absorb $\delta M_{BH}(\tilde{t}_0)$ (and hereditary integrals) into background mass M
- We take our "snapshot" at the preferred time when $\Omega(\tilde{t}_0) = \Omega_0(\tilde{t}_0)$

$\ell = 0$, dissipative sector

What comes out of the solution?

- balance law: $\dot{E}_0 + \delta \dot{M}_{BH} = \mathcal{F}_{\infty}$
- first major result/consistency check of our framework

$\ell = 0$, dissipative sector

What comes out of the solution?

• binding energy $E_{bind} = (M_{\rm Bondi} - m - M_{BH})/\mu$

$\ell = 0$, dissipative sector

What comes out of the solution?

• binding energy $E_{bind} = (M_{\rm Bondi} - m - M_{BH})/\mu$

$\ell = 0$, conservative sector

What comes out of the solution?

 \blacksquare binding energy $E_{bind} = (M_{\rm Bondi} - m - M_{BH})/\mu$

$\ell = 0$, conservative sector

• binding energy $E_{bind} = (M_{\text{Bondi}} - m - M_{BH})/\mu$

Computing the binding energy

$$E_{bind} = (M_{\text{Bondi}} - m - M_{BH})/\mu$$

- - A particular solution can always include a global mass perturbation $h_{\mu\nu}^{\delta M} = \frac{\partial g_{\mu\nu}}{\partial M} \delta M$, implicitly determined by BCs
 - This unkown mass contributes to M_{BH}
 - We use $M_{BH} = M_{irr} = \sqrt{rac{\text{Area of Apparent Horizon}}{16\pi}}$
 - Lengthy calculation leads to explicit formula for $M_{irr} = M + \epsilon M_1(\tilde{v}) + \epsilon^2 M_2(\tilde{v}) + O(\epsilon^3)$
 - Because it depends only on slow time $\tilde{v}=\epsilon v$, it should be gauge invariant through order ϵ^2
- Results for *E*_{bind}? see Barry's talk

Outline

1 Why second order?

- 2 The local problem and a new, highly regular gauge
- 3 The global problem and method of multiple scales
- 4 Application: quasicircular orbits in Schwarzschild

5 Conclusion

Status of formalism

The "local problem"

- in a highly regular gauge, nondistributional singularities are eliminated ⇒ we can maintain the idea of a point particle
- this makes direct computation of gauge-invariant quantities (e.g., second-order Teukolsky) look very promising
- still missing spin and quadrupole effects at second order

The "global problem"

- multiscale formulation is under development, with a few remaining issues
- need to deal with resonances
- numerical tools are working well in Schwarzschild, but we need extensions to eccentric orbits and Kerr

Status of implementation in Schwarzschild

What I said last year:

"snapshot calculation" essentially complete for $\ell=0$ field —see talk by Wardell

What I say this year:

- $\hfill\blacksquare$ "snapshot calculation" is complete for $\ell=0$ field, many consistency checks passed
 - see talk by Wardell
- *but* niggling concerns about near-horizon BCs, possible error in expression for M_{irr} see talk by Wardell
- dissipative higher- ℓ modes should be easier

Hierarchy of self-force models [Hinderer and Flanagan]

 \blacksquare on an inspiral timescale $t\sim 1/\epsilon,$ the phase of the gravitational wave has an expansion

$$\phi = \frac{1}{\epsilon} \left[\phi_0 + \epsilon \phi_1 + O(\epsilon^2) \right]$$

- a model that gets ϕ_0 right is probably enough for signal detection in many cases
- a model that gets both ϕ_0 and ϕ_1 is enough for parameter extraction

Hierarchy of self-force models [Hinderer and Flanagan]

- \blacksquare a model that gets ϕ_0 right is probably enough for signal detection in many cases
- a model that gets both ϕ_0 and ϕ_1 is enough for parameter extraction

- \blacksquare a model that gets ϕ_0 right is probably enough for signal detection in many cases
- a model that gets both ϕ_0 and ϕ_1 is enough for parameter extraction

Relating the expansions

Using SF to directly model IMRIs and similar-mass binaries

- SF results use "mass symmetrized" model: $\frac{m}{M} \rightarrow \frac{mM}{(m+M)^2}$
- with mass-symmetrization, second-order self-force might be able to directly model even comparable-mass binaries