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Why? Local problem Global problem Application Conclusion

Modeling EMRIs

treat m as source of perturbation of
M ’s metric gµν :

gµν = gµν + εh1
µν + ε2h2

µν + . . .

where ε ∼ m/M
represent motion of m via worldline
zµ satisfying

D2zµ

dτ2 = εFµ
1 + ε2Fµ

2 + . . .

force is small; inspiral occurs very slowly, on time scale τ ∼ 1/ε

suppose we neglect Fµ
2 ; leads to error δ

(
D2zµ

dτ2

)
∼ ε2

⇒ error in position δzµ ∼ ε2τ2

⇒ after inspiral time τ ∼ 1/ε, error δzµ ∼ 1
so accurately describing orbital evolution requires second order
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Improving models of IMRIs and similar-mass binaries

at interface between
models, SF data can fix
high-order PN terms and
calibrate EOB
already done at first order
second-order results will
further improve these
models
also can use SF to directly
model IMRIs

Binary parameter space

[Leor Barack]
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Why? Local problem Global problem Application Conclusion

What is the problem we want to solve?

Need to deal with internal 

dynamics and strong fields 

near object

A small, compact object of mass and size
m ∼ l ∼ ε moves through (and influences)
spacetime

Option 1: tackle the problem directly, treat
the body as finite sized, deal with its internal
composition
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Why? Local problem Global problem Application Conclusion

What is the problem we want to solve?

Metric here must agree with 

metric outside a small 

compact object; and "here" 

moves in response to field

A small, compact object of mass and size
m ∼ l ∼ ε moves through (and influences)
spacetime

Option 2: restrict the problem to distances
s � m from the object, treat m as source of
perturbation of external background gµν :

gµν = gµν + εh1
µν + ε2h2

µν + . . .

This is a free boundary value problem
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What is the problem we want to solve?

Distributionally ill defined 

source appears here!

A small, compact object of mass and size
m ∼ l ∼ ε moves through (and influences)
spacetime

Option 3: treat the body as a point particle
I takes behavior of fields outside object and

extends it down to a fictitious worldline
I so h1

µν ∼ 1/s (s =distance from object)
I second-order field equation
δG[h2] ∼ −δ2G[h1] ∼ (∂h1)2 ∼ 1/s4

—no solution unless we restrict it to points
off worldline, which is equivalent to FBVP
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Why? Local problem Global problem Application Conclusion

What is the problem we want to solve?

A small, compact object of mass and size
m ∼ l ∼ ε moves through (and influences)
spacetime

Option 4: transform the FBVP into an
effective problem using a puncture, a local
approximation to the field outside the object
This will be the method emphasized here
But we’ll see how the idea of a point particle
can be sustained in a highly regular gauge
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Matched asymptotic expansions

outer expansion: in external
universe, treat field of M as
background
inner expansion: in inner region,
treat field of m as background
in buffer region, feed information
from inner expansion into outer
expansion
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The inner expansion

Zoom in on object
use scaled distance s̃ ∼ s/ε to keep size of object fixed, send other
distances to infinity as ε→ 0
unperturbed object defines background spacetime gIµν in inner
expansion
buffer region at asymptotic infinity s � m
⇒ can define object’s multipole moments as those of gIµν
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First and second order solutions

Given only the existence of inner expansion, local solution in Lorenz
gauge found to be:

First order
h1

µν = hS1
µν + hR1

µν

hS1
µν ∼ 1/s + O(s0) defined by mass monopole m

hR1
µν is undetermined homogenous solution regular at s = 0

Second order
h2

µν = hS2
µν + hR2

µν

hS2
µν ∼ 1/s2 + O(1/s) defined by

1 monopole correction δm
2 mass dipole Mµ

3 spin dipole Sµ
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Perturbed position at first order [Mino et al, Gralla-Wald, Pound]

Reminder: mass dipole moment M i :
small displacement of center of mass from origin of coordinates

e.g., Newtonian field m
|x i − δz i |

≈ m
|x i |

+ mδz jnj
|x i |2

⇒ M i = mδz i

buffer region

0

m

r

t
Definition of object’s worldline:

work in coordinates (t, x i)
centered on a curve γ
mass dipole is integral over
small sphere:
M i = 3

8π lim
s→0

∮
h2

µνuµuνnidS

equation of motion of zµ:
whatever ensures M µ ≡ 0
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Perturbed position at second order [Pound]

Problem:
mass dipole moment defined for asymptotically flat spacetimes
beyond zeroth order, inner expansion is not asymptotically flat

Solution:
start in “rest gauge”
centered on zµ

demand that
transformation to
practical (e.g., Lorenz)
gauge does not move zµ

i.e., insist ∆zµ = 0
ensures worldline in the
two gauges is the same
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0th-, 1st-, and 2nd-order equations of motion

0th order, arbitrary object: D2zµ

dτ2 = O(m) (geodesic motion in gµν)

1st order, arbitrary object [MiSaTaQuWa]:

D2zµ

dτ2 = − 1
2
(
gαδ + uαuδ

)(
2hR1

δβ;γ − hR1
βγ;δ

)
uβuγ+ 1

2m Rα
βγδuβSγδ+O(m2)

(motion of spinning test body in gµν + hR1
µν )

2nd-order, nonspinning, spherical object [Pound]:
D2zµ

dτ2 = − 1
2 (gµν + uµuν)

(
gν

ρ − hR
ν

ρ
) (

2hR
ρσ;λ − hR

σλ;ρ
)

uσuλ + O(m3)

(geodesic motion in gµν + hR
µν)

still need 2nd-order equation incorporating spin & quadrupole
moments
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Point particles and punctures
replace “self-field” with “singular field”

at 1st order, can use this to replace object with a point particle:

T1
µν := 1

8π δGµν [h1]

beyond 1st order, point particles not well defined—but can replace
object with a puncture, a local singularity in the field, moving on γ,
equipped with the object’s multipole moments
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Puncture scheme

use a local expansion of hSn
µν as a “puncture” hPn

µν that moves on γ
solve field equations for hn

µν and hRn
µν := hn

µν − hPn
µν ≈ hRn

µν

move the puncture with eqn of motion (using ∂hRn
µν |γ = ∂hRn

µν |γ)

Adam Pound Progress at second order 15 / 35
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Metric in a lightcone gauge

The “rest gauge” metric is derived from an inner expansion
—specifically, the metric of a tidally perturbed BH in
Eddington-Finkelstein coordinates + lightcone gauge
Exact Schwarzschild metric in EF coords is linear in m
Translates to a highly regular metric perturbation in outer
expansion: h2

µν ∼ m2s0E + msδE
Can define singular and regular fields

hS1
µν ∼

m
s

hS2
µν ∼ m2s0 + msδE

hR1
µν ∼ s2δE

hR2
µν ∼ s2δ2E

gµν + hR
µν is a vacuum metric, and motion is geodesic in it
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Motion in a highly regular gauge [Pound 2017]

Transforming to a generic gauge such as Lorenz, we end up with the
strong, 1/s2 divergences
But we can keep the gauge highly regular by performing a smooth
transformation (subject to worldline-preserving condition ξµ|γ = 0):

∆hR1
αβ = Lξ1gαβ

∆hS1
αβ = 0

∆hR2
αβ = Lξ2gαβ + Lξ1hR1

αβ + 1
2L

2
ξ1

gαβ

∆hS2
αβ = Lξ1hS1

αβ

This ensures gµν + hR
µν remains a vacuum metric and that motion

remains geodesic in it
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Point particles and punctures in a highly regular gauge

In the highly regular gauge, hS2
µν ∼ mhR1

s + m2s0 + . . .

The second-order field equation becomes

δGµν [hR2] = −δ2Gµν [h1]− δGµν [hP2]

where hR2
µν can be in any desired gauge

But δ2Gµν now well defined as a distribution, so we can write a
distributional equation for the retarded field:

δGµν [h2] = −δ2Gµν [h1] + 8πT2
µν

Here T2
µν defined from δGµν [h2], not from expansion of exact

point-particle stress-energy
—I haven’t yet examined its form, but it can define what we mean
by the second-order stress-energy of a point particle
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Benefits of working in highly regular gauge

Eliminates most singular part of source and associated
computational expense
Can solve for retarded field directly, without a puncture
Can use mode-sum regularization?
Can eliminate troublesome singularities in EFT approach?
Can express singular and regular fields in terms of Green’s functions?
Since the nondistributional singularity can be eliminated with a
gauge transformation, invariant field equations (e.g., second-order
Teukolsky) should be free of it
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Solving the perturbed Einstein globally

solving the local problem told us how to replace the small object
with a moving puncture in the field equations:

Eµν [hR1] = −Eµν [hP1] inside Γ
Eµν [h1] = 0 outside Γ

Eµν [hR2] = δ2Rµν [h1, h1]− Eµν [hP2] inside Γ
Eµν [h2] = δ2Rµν [h1, h1] outside Γ

D2zµ

dτ2 = −1
2(gµν + uµuν)(gν

δ − hRν δ)(2hRδβ;γ − hRβγ;δ)uβuγ

where Γ is a tube around zµ, Eµν [h] ∼ �hµν , hPn
µν ≈ hSn

µν ,
hRn

µν = hn
µν − hPn

µν

the global problem: how do we solve these equations in practice?
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Typical calculation at first order

approximate the source orbit
as a bound geodesic
impose outgoing-wave BCs at
I+ and H+

solve field equation
numerically, compute
self-force from solution
system radiates forever; at
any given time, BH has
already absorbed infinite
energy
but on short sections of time
the approximation is accurate
breaks down on dephasing
time ∼ 1/

√
ε, when

|zµ − zµ
0 | ∼ M
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Typical calculation at first order

Geodesic
approximation
accurate to 1st
order in region

of size

approximate the source orbit
as a bound geodesic
impose outgoing-wave BCs at
I+ and H+

solve field equation
numerically, compute
self-force from solution
system radiates forever; at
any given time, BH has
already absorbed infinite
energy
but on short sections of time
the approximation is accurate
breaks down on dephasing
time ∼ 1/

√
ε, when

|zµ − zµ
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Infrared problems at second order

suppose we try to use “typical”
h1

µν to construct source for h2
µν

because |zµ − zµ
0 | blows up

with time, h2
µν does likewise

because h1
µν contains outgoing

waves at all past times, the
source δ2Rµν [h1] decays too
slowly, and its retarded integral
does not exist
instead, we must construct a
uniform approximation

I h1
µν must include evolution

of orbit
I radiation must decay to zero

in infinite past
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Resolutions of the infrared problem

Option 1
solve field equations and equation of motion self-consistently in the
time domain
problems:

I limited accuracy
I gauge instabilities
I difficult to accurately account for growing BH mass (see Moxon’s

talk)
Option 2:

again use matched expansions: different expansions in different
regions
advantages:

I allows calculations in frequency domain; high accuracy
I no instabilities
I better control over behavior in each region, easier to impose correct

initial data
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Matched expansions [Pound, Moxon, Flanagan, Hinderer, Yamada, Isoyama, Tanaka]

multiscale
expansion

here

post-
Minkowski
expansion

here

near-
horizon
expansion
here

Multiscale expansion
multiscale expansion: expand
orbital parameters and fields as

J = J0(t̃) + εJ1(t̃) + . . .

hn
µν ∼

∑
kk′

hn
kk′(t̃)e−ikqr (t̃)−ik′qφ(t̃)

where (J , q) are action-angle
variables for zµ, and t̃ ∼ εt is a
“slow time”
solve for hn

kk′ at fixed t̃ with
standard frequency-domain
techniques

Get boundary conditions from
post-Minkowski expansion: expand hn

µν in powers of M
near-horizon expansion: expand hn

µν in powers of gravitational
potential near horizon
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Quasicircular orbits in Schwarzschild [Pound, Wardell, Warburton, Miller, Barack]

Multiscale expansion of the
worldline:

I radius rp = r0(t̃) + εr1(t̃) + . . .
I frequency

Ω = Ω0(t̃) + εΩ1(t̃) + . . .
I orbital phase φp = 1

ε

∫
Ωdt̃

Multiscale expansion of the field:

hn
µν =

∑
ilm

hn
ilm(t̃, r)e−imφp(t̃)Y ilm

µν

we take a “snapshot”, doing our calculations at some t̃ = t̃0
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Field equations

Eµν [hR1] = −Eµν [hP1] inside Γ
Eµν [h1] = 0 outside Γ

Eµν [hR2] = δ2Rµν [h1, h1]− Eµν [hP2] inside Γ
Eµν [h2] = δ2Rµν [h1, h1] outside Γ

D2zµ

dτ2 = εFµ
1 + ε2Fµ

2

hP1
µν ∼

m
|xα − zα|

hP2
µν ∼

m2

|xα − zα|2
+ δm + mhR1

|xα − zα|
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Adam Pound Progress at second order 28 / 35



Why? Local problem Global problem Application Conclusion

Boundary conditions from PM/Near-Horizon expansions

At large r , adapt Blanchet-Damour PM methods
The source behaves as δ2R0

il0 ∼
Sil0
r2

For l = 0, 2, hereditary terms arise:

h2
il0 ∼ ln(r/ε)Sil0 +

∫ 0

−∞

d
dt̃

Sil0(t̃ − εr + z̃) ln z̃ dz̃

At r ≈ 2M , similar iteration using near-horizon retarded Green’s function
(Semi)hereditary terms arise:

h2
il0 ∼ (r − 2M )δ2Ril0 +

∫ 0

−∞
δ2Ril0(t̃ + εr + z̃)dz̃

We use these asymptotic approximations as punctures h∞Pil0 and hHPil0 at
infinity/horizon (actually, we currently use ad hoc hHPil0 !)
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Specialization to ` = 0

Advantages?
Clean(?) split into dissipative and conservative sectors

I Dissipative sector: h2
tr , ∂t̃h1

tt , ∂t̃h1
rr , gµν∂t̃h1

µν , ṙ0
I Conservative sector: h2

tt , h2
rr , gµνh2

µν , r1

First-order solution known analytically
Things to mind:

First-order perturbation must include slowly varying correction to
BH mass
We absorb δMBH (t̃0) (and hereditary integrals) into background
mass M
We take our “snapshot” at the preferred time when Ω(t̃0) = Ω0(t̃0)
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` = 0, dissipative sector

field equation:

∂2
r hR2

tr ∼ δ2Rtr [h1, h1]
− ∂2

r hS2
tr

− ∂t̃h1
tt

2 5 10 20 50 100

10- 7

10- 5

0.001

What comes out of the solution?
balance law: Ė0 + ˙δMBH = F∞
first major result/consistency check of our framework
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Computing the binding energy

Ebind = (MBondi −m −MBH )/µ

MBondi obtained from matching numerical field to PM expansion
How to identify MBH ?

I A particular solution can always include a global mass perturbation
hδM
µν = ∂gµν

∂M δM , implicitly determined by BCs
I This unkown mass contributes to MBH

I We use MBH = Mirr =
√

Area of Apparent Horizon
16π

I Lengthy calculation leads to explicit formula for
Mirr = M + εM1(ṽ) + ε2M2(ṽ) + O(ε3)

I Because it depends only on slow time ṽ = εv, it should be gauge
invariant through order ε2

Results for Ebind? — see Barry’s talk
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Outline

1 Why second order?

2 The local problem and a new, highly regular gauge

3 The global problem and method of multiple scales

4 Application: quasicircular orbits in Schwarzschild

5 Conclusion
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Status of formalism

The “local problem”
in a highly regular gauge, nondistributional singularities are
eliminated ⇒ we can maintain the idea of a point particle
this makes direct computation of gauge-invariant quantities (e.g.,
second-order Teukolsky) look very promising
still missing spin and quadrupole effects at second order

The “global problem”
multiscale formulation is under development, with a few remaining
issues
need to deal with resonances
numerical tools are working well in Schwarzschild, but we need
extensions to eccentric orbits and Kerr
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Status of implementation in Schwarzschild

What I said last year:
“snapshot calculation” essentially complete for ` = 0 field
—see talk by Wardell

What I say this year:
“snapshot calculation” is complete for ` = 0 field, many consistency
checks passed
— see talk by Wardell
but niggling concerns about near-horizon BCs, possible error in
expression for Mirr — see talk by Wardell
dissipative higher-` modes should be easier
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Hierarchy of self-force models [Hinderer and Flanagan]

on an inspiral timescale t ∼ 1/ε, the phase of the gravitational wave
has an expansion

φ = 1
ε

[
φ0 + εφ1 + O

(
ε2
)]

a model that gets φ0 right is probably enough for signal detection in
many cases
a model that gets both φ0 and φ1 is enough for parameter extraction
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Hierarchy of self-force models [Hinderer and Flanagan]

on an inspiral timescale t ∼ 1/ε, the phase of the gravitational wave
has an expansion

φ = 1
ε

[
φ0 + εφ1 + O

(
ε2
)]

a model that gets φ0 right is probably enough for signal detection in
many cases
a model that gets both φ0 and φ1 is enough for parameter extraction

determined by
• averaged dissipative piece of Fµ

1

Adiabatic order determined by
• averaged dissipative piece of Fµ

2
• conservative piece of Fµ

1
• oscillatory dissipative piece of Fµ

1

Post-adiabatic order
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Relating the expansions

In buffer region, metric near object
in M is mapped to

metric near γ in ME

metric asymptotically far from
object in MI
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Using SF to directly model IMRIs and similar-mass binaries

Comparisons for equal-mass binaries

SF results use “mass symmetrized” model: m
M →

mM
(m+M)2

with mass-symmetrization, second-order self-force might be able to
directly model even comparable-mass binaries

Adam Pound Progress at second order 35 / 35


	Why second order?
	The local problem and a new, highly regular gauge
	The global problem and method of multiple scales
	Application: quasicircular orbits in Schwarzschild
	Conclusion

