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Overcharging and Overspinning using test objects

Cosmic censorship: curvature singularities arising from gravitational
collapse are hidden by an event horizon

Important studies that used test objects to subvert censorship:

Wald (1974): Extremal Kerr-Newman black hole cannot be
overspun/overcharged by test objects

Hubeny (1999): For near-extremal RN BH, there exists region in
{E,m, g} space of test charge that yields overcharged state

Jacobson, Sotiriou (2009): Region in {§E,dJ} parameter space for test
body exists that yields overspun state of near-extremal KN BH

Zimmerman, Vega, Hass, & Poisson (2013): EM self-force becomes
repulsive near the horizon preventing overcharging in Hubeny
scenario

Colleoni, Barack, Shah, & Van de Meent (2015): Gravitational
self-force prevents overspinning in Jacobson-Sotiriou scenario



Self-force as a cosmic censor in higher dimensions?

The overspinning scenario has already been analyzed in higher
dimensions. Cosmic censorship is found to be upheld in this case.
Bouhmadi-Lopez, Cardoso, Nerozzi & Rocha (2010)

Studies of the self-force in higher dimensions: Harte, Flanagan &
Taylor (2016), Taylor & Flanagan (2015), Frolov & Zelnikov (2014), and
Beach, Poisson & Nickel (2014).

These motivate us to extend the Hubeny overcharging scenario to
higher D.



Review of Hubeny scenario

The Hubeny scenario consists of a test charge with mass m, energy E,
and charge q falling radially towards a nearly-extremal RN black
hole of mass M, charge Q.

Test particle approximation is imposed by setting
m~E~qg<Q<M.

The particle follows an equation of motion
ma® = qFzu”. (1)

To cross the horizon, its velocity u® = (t, ,0,0) must satisfy

1. » >0, Vr>ry (No turning point)
2. t>0 Vr>ry (u* future-pointing for r > r..)



Review of Hubeny scenario

The black hole is overcharged after particle absorption when
Q+qg>M+E

Following these preceding conditions, Hubeny found the constraints
to the region in the {E, m, g} parameter space that satisfy the
overcharging condition.

Hubeny inequalities

q > ﬂ’ (Za)
2
99<E<q+Q—M, (2b)
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2MEq — Q(E* + q°)
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= Q\/ QM — @) (2]



Review of Hubeny scenario

Extremal case (Q = M)
g<E<Qg, m<oo, g>0. nosolution
Nearly-extremal case (M =1,Q = 1 — 2¢?)

q = Qe a>1
E=aec—2be® suchthat 1<b<a (3)

m = Ce, c<yva’—b?



Charged Schwarzschild-Tangherlini BH

We consider a test charge moving in the charged
Schwarzschild-Tangherlini spacetime, D > 4-dimensional charged
static, asymptotically flat, spherically-symmetric black hole solution
of the D-dimensional Einstein-Maxwell equation.

D-dimensional Reissner-Nordstrom /charged Schwarzschild
-Tangherlini line element

5 M & 2, H £ - 2, 2402
ds:—(1—rD3+r2( >dt < rD3+r2(D—3)> dri4rodQp_,

(4)

with
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The black hole supports an EM field A, = —Q/ ((D — 3)r°=3) which
interacts with the particle’s charge.




Metric after absorption

Following previous works, (Hubeny, 1999), (Bouhmadi-Lopez et al,
2010), (Jacobson & Sotiriou, 2009), the ADM mass M and charge Q of
the black hole goes to M + E and Q + g, respectively.

After absorption, the metric function becomes

B 167(M + E) 8m(Q+q)’
=15 200 7= "0 -0 -0 ©

The event horizon would then be located at

p—3 _ M+E _w%(Q%—q)2 _ [(D=2)Qp-2
T oo | T W =A0=3) 8r

(7)



Overcharging condition

The metric thus describes a naked singularity when
Q+qg>wy'(M+E). (8)

This overcharging condition can be written as follows to provide an
upper bound for E:
E<wy(Q+qg)—M. 9)



Kinematics of radial infall

For the particle with velocity u® = (T, R,0,...,0) to cross the horizon
during infall,
R>>0Vr>r, (10)
T>0Vr>r, (1)

Equation of motion

ma® = qF*gu® (12)
E=—paly = mfT+ (D—q3Q)rD—3 is conserved. (13)

Thus we get
"= 7 (£~ =) "

. Q 2
# = (= ) 10 "



Crossing conditions

We can enforce T> 0 Vr > ry if
qQ

E> ————
(D—3)r}~3

(16)
which is a lower bound on E.

We can enforce R? > 0 Vr > r,. if
2MEq — Q(E? + wpq?)
. 17
e wDQ\/ o — 2R i

Combining lower and upper bounds for E gives

For this interval in E to exist, we need to require

D—3 M —wpQ
. 19
q>rh <thDf3 /(0= 3)) (19)




Generalized Hubeny inequalities for D > 4

The set of inequalities constraining the {E, m, q} parameter space
for a D-dimensional RN black hole (M, Q) are then

D-3 M —wpQ
20
q>ry (wDr’i‘3—Q/(D—3)> (20)

qQ
— < E — 21
R - <E<wp(Q+g (21)
2MEG — Q(E? + w3q?)
m<w Q\/ A —2@) (22)
where
(D

G (23)

is a dimensionless constant.
These reduce to the Hubeny inequalities when D = 4.
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Extremal case for D > 4

In the extremal case, we generalize Wald's result to D > 4.

The generalized Hubeny inequalities become

qg>0 (24a)
m < oo (24b)
g<E<g (240)

This has no solution. Thus, extremal RN black holes for D > 4 cannot
be overcharged, just as in D = 4.



Nearly-extremal case for D > 4

Near-extremality can be parameterized as
M=1 (25a)
Q=wy' — 26 (25b)

Rewriting inequalities in terms of € and then taking a series
expansion around e = 0, we can find a solution similar to Hubeny's.

q:A€ A>CUD_1/2

E = wp(Ae —2B€?) suchthat 1<B <y/wpA (26)

m = Ce, C < 1/A%w} — B2wp

The main difference is the presence of the D-dimensional factor wp.

Therefore, we can also overcharge nearly-extremal black holes for
any D > 4. The caveat is that D can't be very large.



Large D limit
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Figure 1: Allowed parameter space in g for nearly-extremal BH with

€ = 0.001. Notice that as D — oo, gmin — oo. Therefore, as D increases, the
required charge eventually becomes too large so that the test particle
assumption breaks down. "



Large D limit
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Figure 2: Width of parameter space in E, AE = Epax — Emin, fOr
nearly-extremal BH with e = 0.001. (shaded region) As D — oo, AE — 0.



Large D limit
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Figure 3: Allowed parameter space in m for nearly-extremal BH with
e =0.001. ASD — oo, m — Q.
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Summary and Outlook

Summary

1. Extremal higher-dimensional black holes cannot be
overcharged. (Generalization of Wald's result in D = &)

2. Nearly-extremal higher-dimensional black holes can be
overcharged. (Generalization of Hubeny in D = 4)

3. In the large D limit, overcharging becomes systematically
difficult to achieve.

Work in progress
Does Jacobson-Sotiriou overspinning generalize to nearly-extremal
Myers-Perry black holes?

Outlook
Can the higher-dimensional self-force act as a cosmic censor?
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