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Outline of Talk.

I. General Relativistic Model: Isotropic Metric.

II. The Power Series Expansion Method.

III. Compound Pendulum Example.

IV. Identification of Terms that Advance the Series.

V. Calculation of an A-Priori Error Limit.

VI. History of the Method: Close Calls.

Abstract: The motion of two or more sources of a gravitational field is modelled using the 

Parker Sochacki Method in adaptive finite element analysis. In rest frames, the metric is 

isotropic but not conformally flat. A metric equation for the conjugate mass-energy-

momentum equation provides explicit consistency with quantum mechanics: Unitarity is 

preserved because Planck's Constant is invariant with metric scaling. While a metric is 

invariant under a local lorentz transformation, it is not invariant in under a lorentz 

transformation at an observer with a different metric scaling. The lorentz-transformed 

metric provides the affine connection for the equations of motion, which gives the 

velocities of the rest frames of the metrics at each point in space as seen by an observer at 

an arbitrary location. The equivalence principle applied to the continuity equation 

(or Bianchi identities) for the Einstein Tensor as seen by any observer provides the 

equation which advances the Taylor series for the metric scaling: Gjk(g-2),k=0, where the 

metric scaling g appears in the metric equations in rest frames as dt2=g-2dt2-g2r2 and

dm0
2=g2E2-g-2p2. This method is inherently symplectic because it uses the Parker Sochacki 

Method. It is inherently retarded and parallelizable because time evolution depends only on 

local conditions: Each processor can independently track its finite element.



General Relativistic Model: Isotropic Metric.

dt 2=dt’2/g2-g2r’2 dt 2=gijdx
idx j (1)

dm0
2=g2E’2-p’2/g2 dm0

2=gijdpidpj (2)

(3) (4)

(5)

(6)

Gij
;j=0 (7) Gij’=g2Gij (8) Gij(g2),j=0 (9)
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Lorentz Transformations.
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