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Regge-Wheeler Formalism

In perturbation theory, one expands the physical metric gab to first-order,

gab = g0ab + hab.

Both the physical metric and the background metric are solutions to the
Einstein Field Equations (EFEs),

Gab(g) = 8πTab, (1)

and we may expand the field equations in powers of the metric
perturbation hab,

Gab(g0 + h) = Gab(g0)− 1
2
Eab(h) + O(h2), (2)

with,

Eab(h) = ∇c∇chab +∇a∇bh − 2∇(a∇chb)c

+ 2R c d
a b hcd + g0ab(∇c∇dhcd −∇c∇ch).
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Regge-Wheeler Formalism

We take advantage of the spherical symmetry of our background
spacetime and project all tensor fields and equations onto an orthogonal,
pure-spin tensor harmonic basis1,

Y `m, Y `m
A , X `m

A , Y `m
AB , X

`m
AB ,

with Y and X splitting the decomposition into even- and odd-parity
modes, respectively.

When decomposing the EFEs, we recover 10 PDEs to solve (7 of
even-parity and 3 of odd-parity).

Using the Bianchi identites, we may reduce the number of equations to 4
of even-parity and 2 of odd-parity.

1K. Martel and E. Poisson, Phys. Rev. D 71, 104003 (2005).
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Regge-Wheeler Formalism

From the remaining free equations we recover two “master equations”2[
− ∂2

∂t2
+

∂2

∂r2∗
− V `m

e/o

]
Ψ`m

e/o = S`me/o ,

which govern the evolution of the even- and odd-parity “master
functions” Ψe/o , gauge-invariant scalar fields constructed from
components of the metric perturbation,

Ψ`m
o =

r

λ

[
∂rh

`m
t − ∂th`mr −

2
r
h`mt

]
,

Ψ`m
e =

2r
`(`+ 1)

[
K `m +

1
Λ

(f 2h`mrr − rf ∂rK
`m)

]
.

2S. Hopper and C. Evans, Phys. Rev. D 82, 084010 (2010).
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Gauge Invariance in RW Formalism

The master functions are true gauge-invariant quantities (per (`,m)
mode) for any gauge vector ξa.

The (rather simple) way to see this fact is to calculate the changes to the
metric perturbation under such a gauge transformation, e.g., given a
gauge vector ξ`mA = ξ`modd X

`m
A ,

h`mr → h`mr +

(
∂

∂r
− 2

r

)
ξ`modd,

h`mt → h`mt +
∂

∂t
ξ`modd,

and then expand the metric components in Ψ`m
e/o .

In fact, several gauge-invariant scalar fields have been constructed
throughout the years (see Moncrief, Sachs, Gerlach and Sengupta, etc.).
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Gauge-Invariant Local Singular Information

The idea is to construct gauge-invariant punctures to be used in
regularizing the master functions.
• Begin with a puncture field (for convenience, choose Lorenz gauge

as starting gauge)3.

• Decompose in harmonic basis.

• Construct singular master functions through gauge-invariant
combinations of these metric components.

• Use these singular master functions to construct an effective source.

3C. O. Lousto and H. Nakano, Class. Quant. Grav. 25, 145018 (2008).
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Puncture Field
A few puncture field formulations have been introduced, but let’s use the
Lorenz gauge puncture from Wardell and Warburton4.

4B. Wardell and N. Warburton, Phys. Rev. D 92, 084019 (2015).
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Puncture Field

The puncture components are given projected in the (1)-(10) basis5, so
we need to first translate these into the pure-spin basis of Martel and
Poisson (almost trivial).

• Each projection of the puncture field is finite for a given (`,m)

• The rich structure is encapsulated in the |∆r | pieces
For instance, we find that the Martel-Poisson K `m term scales as h̄(3),

K `m
not diff. ∼ −

r2

r − 2M
(2`+ 1)|∆r |.

5L. Barack and C.O. Lousto, Phys. Rev. D 71, 104003 (2005).
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Puncture Field

Capra 20 J. Thompson



Singular Master Functions
Now assume that locally, the master functions separate into singular and
regular pieces,

Ψ`m
o/e = ΨR,`m

o/e + ΨP,`m
o/e ,

and we construct,

ΨP,`m
o =

r

λ

[
∂rh

P
t − ∂thPr −

2
r
hPt

]
.
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Effective Source Construction

Finally, operate on the singular master functions with the appropriate
wave operators to generate the effective source for the residual master
function,[
− ∂2

∂t2
+

∂2

∂r2∗
− V `m

e/o

]
ΨR, `m

e/o = S`me/o −
[
− ∂2

∂t2
+

∂2

∂r2∗
− V `m

e/o

]
ΨP, `m

e/o

≡ S`meff

• The puncture field creates a source in the region of the particle off
of the worldline.

• Radial derivatives hitting |∆r | generate δ(r − R) and δ′(r − R)
terms which contribute to the jump conditions across the orbit.
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Effective Source Construction

Write |∆r | in a distributional sense,

|∆r | = ∆r [2Θ(∆r)− 1] ,

• ∂r |∆r | = 2Θ(∆r)− 1,

• ∂2r |∆r | = 2 δ(∆r),

• ∂3r |∆r | = 2 δ′(∆r).
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Window Function

The puncture field is only valid locally (inside the radius of convergence
for the series expansion), so we enforce this locality with a window
function.
• First introduced by Vega and Detweiler5 for the effective source

problem, W = exp[−(r − R)N/σN ].

• Wardell and Warburton6 show that both the window function and
worldtube methods are equivalent (choose a step function for W).

• Use the window function introduced by Wardell and Warburton,
W = exp[−8M−4(r − R)4].

5I. Vega and S. Detweiler, Phys. Rev. D 77, 084008 (2008).
6N. Warburton and B. Wardell, Phys. Rev. D 89, 044046 (2014).
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Window Function
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Results
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Results

Results will go here.
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Results

Results will go here.

(Eventually)
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Summary

• Take advantage of the gauge invariance of RWZ to calculate
effective source from a puncture in any gauge.

• Higher-order punctures are necessary to regularize the δ′(r − R)
terms.

• Gauge information returns during metric reconstruction.

• Get excited about Regge-Wheeler gauge (classes)!
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