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Introduction

Goals

• EMRI self-force and radiated field at J +

• Kerr

• compute all O(mass ratio) effects (both dissipative & conservative)
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• highly-eccentric orbits:

• LISA EMRIs: likely have e up to ∼ 0.8
• LISA IMRIs (likely rare, but maybe very strong sources if they exist):

may have e up to ∼ 0.998

Restrictions

• [now] (bound, geodesic) equatorial orbits;
[future] this restriction isn’t fundamental: methods can handle generic orbits

• [now] scalar field, develop techniques for [future] gravitational field
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Overall Plan of the Computation

Effective-Source (puncture-function) regularization

• allows Kerr, arbitrary orbits

• less numerical cancellation than mode-sum/extended homogeneous solns
(e.g., van de Meent talk)
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• allows Kerr, arbitrary orbits

• less numerical cancellation than mode-sum/extended homogeneous solns
(e.g., van de Meent talk)• 4th order effective source and puncture function

(tradeoff effective-source complexity vs. convergence order @ puncture)

• equatorial geodesic orbits; no serious obstacles to generic orbits

m-mode (e imφ) decomposition, time-domain evolution

• exploit axisymmetry of Kerr background

• separate 2+1-dimensional time-domain (numerical) evolution for each m
⇒ free parallelization & easier programming than single 3+1-D evolution

• can handle any bound orbit, including high eccentricity and/or evolving
[future] slight extension could handle unbound and/or plunge orbits

• worldtube scheme

• worldtube moves in (r , θ) to follow the particle around the orbit

• (fixed) mesh refinement; finer grids follow the worldtube/particle

• hyperboloidal slices (reach horizon and J +)
[Zenginoğlu, J. Comp. Phys. 230,2286 = arXiv:1008.3809]
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Effective source (puncture function) regularization

Assume a δ-function particle with scalar charge q.

The particle’s physical (retarded) scalar field ϕ satisfies �ϕ = qδ
(

x − xparticle(t)
)

.
ϕ is singular at the particle.
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)

.
ϕ is singular at the particle.

If we knew the Detwiler-Whiting decomposition ϕ = ϕsingular + ϕregular explicitly,
we could compute the self-force via Fa = (∇aϕregular)
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Assume a δ-function particle with scalar charge q.

The particle’s physical (retarded) scalar field ϕ satisfies �ϕ = qδ
(

x − xparticle(t)
)

.
ϕ is singular at the particle.

If we knew the Detwiler-Whiting decomposition ϕ = ϕsingular + ϕregular explicitly,
we could compute the self-force via Fa = (∇aϕregular)

∣

∣

particle
. But it’s very hard to

explicly compute the Detweiler-Whiting decomposition.

Instead we choose ϕpuncture so that it agrees with ϕsingular in the first n terms of a
Laurent series in |x − xparticle|. Then ϕresidual := ϕ− ϕpuncture is finite and
“differentiable enough” at the particle, and

�ϕresidual =

{

0 at the particle
−�ϕpuncture elsewhere

}

:= Seffective

[

solve this
for ϕresidual

]

The self-force is given by Fa = (∇aϕresidual)
∣

∣

particle
.

Note this is exact even though ϕpuncture 6= ϕsingular.
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Puncture field and effective source

The choice of the puncture order n is a tradeoff:
Higher n ⇒ ϕresidual is smoother at the particle (good),
but ϕpuncture and Seffective are more complicated (expensive) to compute.

We choose n=4 ⇒ ϕresidual is C
2 at the particle.
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The choice of the puncture order n is a tradeoff:
Higher n ⇒ ϕresidual is smoother at the particle (good),
but ϕpuncture and Seffective are more complicated (expensive) to compute.

We choose n=4 ⇒ ϕresidual is C
2 at the particle.

The actual computation of ϕpuncture and Seffective uses a (lengthly) series
expansion of the Synge world function in Mathematica, then machine-generated
C code. [Wardell, Vega, Thornburg, & Diener, PRD 85,104044 = arXiv:1112.6355]
Computing Seffective at a single event requires ∼ 1

2 × 106 arithmetic operations.

sample ϕpuncture Seffective
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The worldtube

Problems:
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Solution:
introduce finite worldtube containing the particle worldline

• define “numerical field” ϕnumerical =

{
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The worldtube

Problems:

• ϕpuncture and Seffective are only defined in a neighbourhood of the particle

• far-field outgoing-radiation BCs apply to ϕ, not ϕresidual

Solution:
introduce finite worldtube containing the particle worldline

• define “numerical field” ϕnumerical =

{

ϕresidual inside the worldtube
ϕ outside the worldtube

• compute ϕnumerical by numerically solving

�ϕnumerical =

{

Seffective inside the worldtube
0 outside the worldtube

• Seffective is only needed inside the worldtube

• ϕnumerical has a ±ϕpuncture jump discontinuity across worldtube boundary
⇒ finite difference operators that cross the worldtube boundary

must compensate for the jump discontinuity
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m-mode decomposition

Instead of numerically solving �ϕnumerical =

{

Seffective inside the worldtube
0 outside the worldtube

in 3+1 dimensions, we Fourier-decompose into e imφ modes and solve for each
Fourier mode in 2+1 dimensions via

�m ϕnumerical,m =

{

Seffective,m inside the worldtube
0 outside the worldtube







numerically

solve this

for each m

in 2+1D







The self-force is given (exactly!) by Fa =
∞
∑

m=0
(∇aϕnumerical,m)

∣

∣

particle
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{

Seffective,m inside the worldtube
0 outside the worldtube







numerically

solve this

for each m

in 2+1D







The self-force is given (exactly!) by Fa =
∞
∑

m=0
(∇aϕnumerical,m)

∣

∣

particle

Comparison (vs. direct solution in 3+1 dimensions):

X can use different numerical parameters for different m

X each individual m’s evolution is smaller ⇒ test/debug code on laptop

X “free” parallelization (run different m’s evolutions in parallel)

• in practice compute m≤ 20 numerically, estimate
∞
∑

m=21

via large-m tail series

fitted to m ∈ [12, 20] (separate fit & series at each point around the orbit)
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Moving the worldtube

We actually do m-mode decomposition before introducing worldtube
⇒ worldtube “lives” in (t, r , θ) space, not full spacetime

The worldtube must contain the particle in (r , θ).
But for a non-circular orbit, the particle moves in (r , θ) during the orbit.
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Moving the worldtube

We actually do m-mode decomposition before introducing worldtube
⇒ worldtube “lives” in (t, r , θ) space, not full spacetime

The worldtube must contain the particle in (r , θ).
But for a non-circular orbit, the particle moves in (r , θ) during the orbit.

Small eccentricity: can use a worldtube big enough to contain the entire orbit

Large eccentricity (say e & 0.3):

• must move the worldtube in (r , θ) to follow the particle around the orbit

• recall that our numerically-evolved field is

ϕnumerical :=

{

ϕ− ϕpuncture inside the worldtube
ϕ outside the worldtube

this means then if we move the worldtube, we must adjust the evolved
ϕnumerical: add ±ϕpuncture at spatial points which change from being inside
the worldtube to being outside, or vice versa
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Code Validation

Comparison with
frequency-domain
mode-sum results
kindly provided by
Niels Warburton




Warburton & Barack,
PRD 83,124038
= arXiv:1103.0287
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(r/M)3 ||Fa dissipative part||+
(r/M)3 ||Fa conservative part||+
(r/M)3 ||difference in Fa dissipative part||+
(r/M)3 ||difference in Fa conservative part||+

Typical example:
(a, p, e) = (0.9, 10M , 0.5)
⇒ results agree to

∼ 10−5 relative error

We have also compared
a variety of other
configurations, with
fairly similar results
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e = 0.8 orbit

(a, p, e) = (0.6, 8M , 0.8)
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Wiggles!

Higher-eccentricity orbit:
(a, p, e) = (0.99, 7M , 0.9)
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Key property:

• wiggles on outgoing leg of orbit

• wiggles not seen on ingoing leg
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Wiggles as Kerr Quasinormal Modes: Mode Fit

Test hypothesis that wiggles are quasinormal modes of the (background) Kerr
spacetime, excited by the particle’s close flyby:
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Wiggles as Kerr Quasinormal Modes: Mode Fit

Test hypothesis that wiggles are quasinormal modes of the (background) Kerr
spacetime, excited by the particle’s close flyby: Fit wiggles to damped-exponential
model with corrections for motion of the observer (particle):

Fa(x
i ) =

spline background
(

log(r)
)

r3
+

Aa

r
e−u/τ sin

[

2π
u

T
+mφ+ φ(0)

a

]

where u := t − r∗
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Wiggles as Kerr Quasinormal Modes: Mode Frequencies

Now compare wiggle-fit complex frequency ω := 2π/T − i/τ
vs. known Kerr quasinormal mode frequencies computed by Emanuele Berti.
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Wiggles as Kerr Quasinormal Modes: Mode Frequencies

Now compare wiggle-fit complex frequency ω := 2π/T − i/τ
vs. known Kerr quasinormal mode frequencies computed by Emanuele Berti.

⇒ Nice agreement with least-damped corotating QNM!
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Wiggles as Kerr Quasinormal Modes: Varying BH Spin

Repeat wiggle-fit procedure for other Kerr spins (0.99, 0.95, 0.9, and 0.8)
⇒ Nice agreement with least-damped corotating QNM for all BH spins!
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For what orbits do wiggles occur?

Wiggles are quite generic: they occur whenever the configuration combines

• a sufficiently high Kerr spin a & 0.6

• a sufficiently close periastron passage r . 5M

• a sufficiently high orbital eccentricity e & 0.6
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Conclusions

Methods:

X effective source/puncture function regularization works very well

X m-mode (e imφ) decomposition works very well

X Zenginoğlu’s hyperboloidal slices work very well
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• moving worldtube is essential for e & 0.3
X we have done up to e = 0.98;

higher is possible but expensive with current code
× moving the worldtube does introduce some numerical noise

• details: PRD 85,104044 = arXiv:1112.6355

PRD 95,084043 = arXiv:1610.09319
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QNM Excitation (“wiggles”):

• high Kerr spin ⇒ close periastron passage excites Kerr quasinormal modes;
these show up as “wiggles” in local self-force & in radiated field at J +

• are caustic crossings also important?
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QNM Excitation (“wiggles”):

• high Kerr spin ⇒ close periastron passage excites Kerr quasinormal modes;
these show up as “wiggles” in local self-force & in radiated field at J +

• are caustic crossings also important?

• gravitation: Maarten van de Meent finds wiggles in Ψ4 at J +

• brief description: PRD 95,084043 = arXiv:1610.09319

details (QNMs, phase space, gravitation): paper coming soon
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