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-What do we need to include in our models? 

-Review methods and results 

-Ongoing/recent work 

-Future directions



Modeling goals

Waveform templates need to be accurate across the parameter space 

and generated rapidly

Hopman & Alexander ApJ 629 
(2005) 362-372

-Primary and secondary spinning 
-Motion of secondary can be highly   
eccentric and inclined

Small mass-ratio, q, suggests modeling using black hole perturbation theory

-Need to cover 14 dimensional parameter 
space, so each template must be generated 
in a few seconds

-Template must track waveform phase to 
better than 1 radian over 10s to 100s of 
thousands of cycles
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If the secondary is a Kerr black hole we can write

The self-force can be split into orbit averaged quantities (fluxes) and pieces that 
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Which forces do we need to include in our models and to what accuracy?



Which forces do we need to include in our models and to what accuracy?
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Subleading fluxes and oscillatory forces

Accuracy required 
in force, q=10-6: 10�8 10�210�5

How the different forces influence the inspiral phase can be made precise from a two-timescale analysis, e.g., 
Hinderer and Flanagan (2008). See also talk by Moxon.

Contribution to 
 inspiral phase: O(q�1)

Kerr radial- 

polar resonance

O(q�1/2)



How do these forces influence an inspiral?

Initial Configuration

Later Configuration

Conservative
self-force

Dissipative
self-force

Direction of
apsidal advance

Dissipative and conservative self-forces influence the inspiral differently



Which forces have been calculated?
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1st order fluxes

1st order  
oscillatory

2nd order fluxes

spin-curvature 
force (conservative)

additional flux associated  
with spin of secondary

Barack and Sago 
Akcay, NW, Barack 
Osburn et al. 
Merlin and Shah (circ)

Dolan and Barack (circ) 
van de Meent (generic)

A great deal of theoretical and preparatory numerical work underlies these 
calculations. Many of these effects have also been calculated in pN theory.

but see talks by 
Pound, Wardell, 
Thompson, Yamada 

Drasco and Hughes 
Fujita, Hikida, Tagoshi

Tanaka et al. 
Cutler, Kennefick, Poisson

Hartl 
Ruangsri, Vigeland, HughesSusuki and Maeda

Harms et al. (circ, aligned)Harms et al. (circ, aligned)



Inspiral and waveform methods and results to date

-Flux balance inspirals 
-Kludge inspirals 
-Geodesic self-force inspirals 
-Self-consistent inspirals

Given the various forces we can now compute, inspirals can be 
calculated via a number of different methods:

Every method, except the final one, comes in two steps: computing the 
inspiral trajectory and then computing the associated waveform



Waveform generation

Snapshot waveform (Teukolsky)

Babak et al. (2006)

Quadrupole-octupole kludge

Time-domain simulations

• map Boyer-Lindquist coordinates 
to flat space and use quadrupole 
and octupole formula 

• Works surprising well, down as 
far as rmin >= 5M

Use trajectory as source for TD 
code. Slow to compute but 
important validation
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⌘

Can be computed accurately from 
frequency-domain codes



Description of geodesic
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Description of inspiral trajectory

Relativistic osculating elements 
Schwarz: Pound & Poisson (2007) 
Kerr: Gair et al. (2010)

{p, e,�0} ! {p(t), e(t),�0(t)}

No small force approximations made, just a 
recasting of the equation of motion
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At each time, particle has a position and velocity 
which uniquely matches a geodesic

Trajectory described by
x

↵
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Flux balance inspirals
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So long as the orbital evolution is adiabatic we can 
balance the change in the orbital energy with the radiated 
energy flux

Can be computed in nice formulations (Regge-Wheeler, Teukolsky) 
No local calculation of the self-force necessary

Adiabaticity condition breaks down near the separatrix, e.g., analysis by Cutler, 
Kennefick and Poisson in Schwarz. showed

Equatorial orbits can be computed in a similar fashion by balancing 
change in E and L with associated fluxes

Mino showed so long as the inspiral is adiabatic the change in the Carter 
constant can also be derived

µ/M ⌧ (p� 6� 2e)2



Kludge inspirals

Conceived to meet the data analysis task. Speed was key 
aim and over the years the accuracy has been improving

Two main flavors, analytic kludges (AK) and numerical 
kludges (NK):

Numerical kludge

1. Calculate inspiral trajectory in (E,L,Q) 
space (using pN and Teuk. fluxes)  

2. Numerically integrate the Kerr geodesic 
equations along the inspiral trajectory to 
obtain the Boyer-Lindquist coordinate of 
the inspiral 

3. Waveform from quadrupole-octupole 
formula

5-15 times slower than AK

Babak et al. (2006)

Analytic kludge

Barack and Cutler (2003)

1. Small object moves along a Keplerian 
orbit 

2. Amend motion to incorporate 
periastron and Lense-Thirring precession 
and radiation reaction 

3. Waveform from quadrupole formula



Geodesic self-force inspirals (2012)
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Fit the model with over 1000 geodesic SF values computed using frequency-domain 
Lorenz-gauge code (Akcay, NW, Barack). Model was validated against time-domain 
results from Barack and Sago

In 2012 we used a global interpolation model 
expanding self-force in Fourier coefficients
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Geodesic self-force inspirals (2012 results)
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Computed inspiral for a particular setup, found chi0 subtracted (self-force acts against GR 
periastron advance) ~9 radians over inspiral

Oscillations in (p,e) on the orbital timescale

mass ratio 10-5 example (NW et al.)



How to compare two inspirals?

Conservative self-force changes the 
orbital frequencies e.g., the rate of 
periastron advance changes

When comparing inspirals must 
match inspiral frequencies not initial 
(p,e) values

Interesting to compare flux balance 
inspirals with inspirals that include 
the conservative self-force

How quickly does the flux balance 
inspiral dephrase from the more 
accurate self-force inspiral?
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Dephase about 1 radian over a 
radiation reaction timescale. Suggests 
you can use flux balance waveforms 
for matched filtered searches but 
might introduce a parameter bias



Geodesic self-force inspirals (2015)
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Compute fluxes to high precision using RW code
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cons

+ F (1)↵
diss

Compute oscillatory pieces using Lorenz-gauge code

Local interpolation rather than  global

Osburn, NW, Evans (2015)



Geodesic self-force inspirals (2015)
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• Met accuracy goals for adiabatic 
and oscillatory self-force across 
parameter space 

• Verified influence of error on 
orbital phase by injecting noise 
into self-force



Geodesic self-force inspirals (2015)
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Can now accurately compute inspirals across whole parameter space including first-
order self-force

Model can easily incorporate other forces (2nd order, spin) but… geodesic SF model 
is making an O(1) error

Osburn, NW, Evans (2015)



Geodesic self-force inspirals: error from osculating assumption

O(1)O(µ�1)
Contribution to 
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Subleading fluxes and oscillatory forces



Geodesic self-force inspirals: error from osculating assumption

O(1)O(µ�1)
Contribution to 
 inspiral phase:

F↵ =

Fluxes

+µ3

⇣
hF (2)↵i+ shF (1)↵

dipole

i
⌘

+µ2

⇣
F (1)↵
cons

+ F (1)↵
diss

+ sF↵
spin

⌘

Subleading fluxes and oscillatory forces

µ2hF (1)↵
geo

+ µF (1)↵
insp

i

Geodesic self-force approximation introduces an error at the order we are trying incorporate in 
our model!

Fortunately, initial indications are the coefficient of this term is very small (more on this later)

In principle the subleading terms split into geo and insp contribution but insp contributions are 
suppressed to O(mu) so we need not worry about them



Self-consistent inspirals

No adiabaticity assumptions made

Evolve field equations and equations 
of motion together

Turn to time-domain or Green 
function methods

So far achieved in scalar-field case

Typically much slower to compute but 
are gold standard as no approximation 
(beyond BH pert theory) used

Time-domain simulations give waveform 
as well (GF inspirals would need to use 
a waveform generation)
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Scalar-field example



Which inspirals have been computed?

Flux balance

Kludge

Circular, equatorial 
and spherical done but 
not generic

Tanaka et al. 
Cutler, Kennefick, Poisson

Geodesic SF

Self-consistent

Schwarzschild Kerr

NW et al. 
Osburn, NW, Evans

Barack and Cutler 
Babak et al. 
Chua, Moore, Gair

but see scalar-field  
work by Diener et al.

No 2nd-order fluxes, or dissipative spin effects included in any of these



Ongoing/recent research

-Improved kludge models 

-Inspirals with a spinning secondary 

-Comparison of self-consistent and geodesic SF inspirals



Improved kludge models

Chua, Moore and Gair (2017)

Augmented Analytic Kludge 
(AAK) Chua, Moore, Gair

AAK model publicly available: 
github.com/alvincjk/
EMRI_Kludge_Suite

AAK maps the parameters of 
the AK model to match the 
frequencies of NK waveforms

About as fast to evaluate as 
AK models but with similar 
accuracy to the NK models (its 
a hybrid)



Spinning secondary around Schwarz. black hole

Quasi-circular inspirals: Burko and Khanna

Eccentric inspirals: NW, Osburn, Evans (in prep)

 

Include the spin-curvature force

F t
spin =

3Mur sin ✓p(S'u✓ � S✓u')

rpfp
,

F r
spin =

3Mfput sin ✓p(S'u✓ � S✓u')

rp
,

F ✓
spin =

3Mu' sin ✓p(Stur � Srut)

r3p
,

F'
spin = �3Mu✓(Stur � Srut)

r3p sin ✓p
.

Extend osculating element equations to 
non-equatorial motion when the spin is 
not aligned with the orbital ang. mom.

Spin-curvature MPD force:



Spinning secondary around Schwarz. black hole

Quasi-circular inspirals: Burko and Khanna

Eccentric inspirals: NW, Osburn, Evans (in prep)
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Waveforms for spin-aligned binary with e0=0.7

For more details see 
talk by Osburn

Include the spin-curvature force

Inspiral waveforms computed by osculating between 
Teukolsky snapshot waveforms

Shows the dephasing of the s=0 and s=1 waveforms 
(initially matched in frequencies)

Currently computing dephasing as a function of 
initial (p,e) values - results soon



Comparison of self-consistent and geodesic self-force inspirals

Comparison for scalar-field case between 
geodesic SF inspiral and 3+1 time-
domain self-consistent simulation

O(1)
Contribution to 
 inspiral phase: O(q�1)

F↵ =

Fluxes

+µ3

⇣
hF (2)↵i+ shF (1)↵

dipole

i
⌘

+µ2

⇣
F (1)↵
cons

+ F (1)↵
diss

+ sF↵
spin

⌘

Subleading fluxes and oscillatory forces

µ2hF (1)↵
geo

+ µF (1)↵
insp

i

Want to confirm scaling of insp error term and find coefficient



Comparison of self-consistent and geodesic self-force inspirals

Comparison for scalar-field case between 
geodesic SF inspiral and 3+1 time-
domain self-consistent simulation
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osculating orbits + geodesic SSF
self-consistent evolution

(p0, e0) = (9.0, 0.1)

Difference in phase evolution smaller 
than numerical noise

Diener, NW, Wardell

Great to see such good agreement 
between two completely distinct codes

µu�r�u
↵ = F↵Inspiral is not a geodesic

Need to account for acceleration in regularization procedure See talk by Heffernan

Difference between inspirals is very small - calls for a very accurate 
time-domain code See talk by Diener



Future directions

๏ 2nd order fluxes (see talks tomorrow), spin flux (work in progress) 

๏ Comparison of inspirals from self-force in different gauges 

๏ Further improvements to kludge models 

๏ EOBSF? (see Taracchini’s talk) 

๏ Green function inspirals (see work by Galley and Wardell) 

๏ Evolve through resonances (see van de Meent and Nasipak’s talks) 

๏ Numerical Relativity? (see Schutz’s discussion session on Thursday) 

๏ Faster geodesic self-force models 

๏ Augmented flux models with high-order pN 

๏ Self-consistent inspirals in gravity



Faster inspirals with conservative corrections

Current geodesic SF inspirals are slow to compute as need to 
resolve small oscillations on orbital timescale

ṗ = Fp[p, e,�� �0, F
↵]

ė = Fe[· · · ]
�̇0 = F�0 [· · · ]

RHS varies on orbital timescale. Try replacing it with averaged 
quantities

ṗ = hFp[p, e,�� �0, F
↵]i�

ė = hFe[· · · ]i�
�̇0 = hF�0 [· · · ]i�

Find averaging centered around periastron passages works well. 
Averaging can be performed in an offline step

Resulting system should be as fast to solve for as flux balance case - 
could be used to improve kludges



Faster inspirals with conservative corrections
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Faster inspirals with conservative corrections
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Averaged version tracks evolution of chi0 well and remains in 
phase with the full inspiral better than radiative approximation



Which forces do we need to include in our models and to what accuracy?

O(1)O(µ�1/2)

Kerr radial- 

polar resonance

O(µ�1)

High precision numerical results  
required in strong-field

Contribution to 
 inspiral phase:

F↵ = µ2hF (1)↵i

Fluxes

+µ3

⇣
hF (2)↵i+ shF (1)↵

dipole

i
⌘

+µ2

⇣
F (1)↵
cons

+ F (1)↵
diss

+ sF↵
spin

⌘

Subleading fluxes and oscillatory forces

Accuracy required 
in force, q=10-6: 10�8 10�210�5

Can pN reach this precision  
in the strong-field?



Augmenting inspiral models using high-order pN (MST)

Using MST methods we can (at first-order) reach very high pN

Suggests ~10 pN sufficient to reach 10-2 accuracy for all stable orbits

Kavanagh, Nolan, Dolan, Ottewill, NW, Wardell (2015)
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Augmenting inspiral models using high-order pN (MST)

๏ Need to compute force using MST methods (done by Kavanagh for radiation-
gauge force in Schwarz. spacetime). We think we can do this with the Lorenz-
gauge force also 

๏ pN series grows when orbit is eccentric and inclined, but can might still cover a 
fair piece of the parameter space  

๏ For retrograde orbits the ISCO moves out to 9M (extreme Kerr) 
๏ For prograde orbits the ISCO moves in to 1M (extreme Kerr), maybe argument 

with near-horizon, near-extremal expansion (see Zimmerman’s talk)



Self-consistent inspirals with gravity

Why not done? Low multiple modes (l=0,1) are numerically unstable in Lorenz gauge

Do we need to compute the low-modes self-consistently? No, they do not radiate so must 
contribute at subleading order. Thus difference between geodesic and self-consistent not 
important for these modes.

O(1)
Contribution to 
 inspiral phase: O(q�1)

F↵ =

Fluxes

+µ3

⇣
hF (2)↵i+ shF (1)↵
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⌘
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⇣
F (1)↵
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+ F (1)↵
diss

+ sF↵
spin

⌘

Subleading fluxes and oscillatory forces

µ2hF (1)↵
geo

+ µF (1)↵
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i



Recap and conclusions

๏ Can accurately compute inspirals with first-order force 

๏ Comparison between geodesic SF and self-consistent inspiral ongoing 

๏ Need 2nd-order fluxes and contribution from spin of secondary 

๏ These inspirals are slow to compute: improve Kludges, EOBSF? 

๏ Good to have multiple approaches, geodesic SF, self-consistent, kludge, EOBSF…


