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Gravitational Self-force
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Self-force at First Order

* Compute first order metric perturbation sourced by a point particle with
retarded (outgoing radiation) boundary conditions at horizon and infinity.

* Subtract Detweiler-Whiting singular (S) field from retarded (ret) field to
obtain finite regular (R) field.
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Self-force at First Order

* Compute first order metric perturbation sourced by a point particle with
retarded (outgoing radiation) boundary conditions at horizon and infinity.

* Subtract Detweiler-Whiting singular (S) field from retarded (ret) field to
obtain finite regular (R) field.
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Self-force at Second Order

* Compute second order metric perturbation sourced by first order metric
perturbation with appropriate boundary conditions at horizon and infinity.

* Subtract second order singular (S) field from retarded (ret) field to obtain
finite regular (R) field.
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Self-force at Second Order

* Compute second order metric perturbation sourced by first order metric
perturbation with appropriate boundary conditions at horizon and infinity.

* Subtract second order singular (S) field from retarded (ret) field to obtain
finite regular (R) field.
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Self-force computation strategies

+ Several methods have emerged for computing hclf,

numerical issues of point sources, singular fields.

dealing with the

* These broadly fall into three different categories (+ dissipative approx)

Worldline convolution Mode-sum Effective source
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Self-force computation strategies

+ Several methods have emerged for computing hclf,

numerical issues of point sources, singular fields.

dealing with the

* These broadly fall into three different categories (+ dissipative approx)

Effective source
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Effective Source Regularisation



Effective Source at First Order

+ Derive an evolution equation for ljtll{
by moving l_zé to right hand side and

treating it as an effective source.

Barack and Golbourn, Phys. Rev. D 76, 044020
Detweiler and Vega, Phys. Rev. D 77, 084008

* Always work with 1_111{ instead of ilrlet

+« No distributional sources and no
singular fields.

+ If ilé 1s chosen appropriately, then
we can directly use hIl{ in the
worldline equations of motion.
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Effective Source at First Order

+ Derive an evolution equation for ljtll{
by moving l_zé to right hand side and

treating it as an effective source.

Barack and Golbourn, Phys. Rev. D 76, 044020
Detweiler and Vega, Phys. Rev. D 77, 084008

* Always work with 1_111{ instead of ilrlet

+« No distributional sources and no
singular fields.

+ If ilé 1s chosen appropriately, then
we can directly use hIl{ in the
worldline equations of motion.
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First Order Residual Field

adimensionalized fields
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Smoothness of Effective Source

+ If izé 1s exactly the Detweiler-
Whiting singular field, ®%is a
solution of the homogeneous
wave equation.

+ If l_aé 1s only approximately the
Detweiler-Whiting singular
field, then the equation for l_zll{
has an effective source, S ;,ff [hg]

+ S[hg] finite, but of limited
differentiability on worldline.

- J

Wardell, Vega, Thornburg, Diener, Phys. Rev. D 85, 104044



Window function and Worldtube

* Detweiler-Whiting singular field defined through a Hadamard form

which is not defined glo

oally.

* Need to introduce a method for restricting the singular field to a

region near the particle.

* Two equivalent [Phys. Rev. D 89, 044046] approaches: window

function and worldtube.

* Window function: multiply * Worldtube: Solve for regular
the singular field by a function field inside, outside solve for

which is 1 at the particle
goes to 0 far away:

and retarded field. Boundary
condition at edge of tube:
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Wimdow function and Worldtube

* Window function: multiply
the singular field by a function
which is 1 at the particle and

goes to 0 far away:

(WP°)
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Worldtube: Solve for regular
field inside, outside solve for
retarded field. Boundary
condition at edge of tube:
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Effective Source at First Order:
Results - Numerical Techniques

Authors

Barack &
Golbourn

Vega &
Detweiler

Lousto &
Nakano

Barack,
Golbourn, Sago

Vega, Diener,
Tichy, Detweiler

Warburton &
Wardell

Wardell &
Warburton

Reference Method Case
Phys. Rev. D 76,

044020 2+1 Worldtube Scalar
Phys. Rev. D 77, :

084008 1+1 Window Scalar
Class. Quantum 2+1 Window (not based on e
Grav. 25, 145018 Detweiler-Whiting)

Phys. Rev. D 76, :

124036 2+1 Worldtube Gravity
Phys.Rev. D 80, ,

084021 3+1 Window Scalar
Phys. Rev. D 89, | Frequency Domain Worldtube & | Schwarzschild
044046 Window scalar
Phys. Rev. D 92, | Frequency Domain Worldtube & | Schwarzschild
084019 Window gravity




Effective Source at First Order:
Results - Analytical Techniques

Authors

Vega, Wardell,
Diener

Wardell, Vega,

Thornburg, Diener

Heffernan, Ottewil],

Warburton,
Wardell, Diener

Reference

Class. Quantum Grav. 28
134010

Scalar, geodesic

Phys. Rev. D 85, 104044

Kerr, gravity, geodesic

Unpublished, see
Anna Heffernan’s talk

Non-geodesic/accelerated scalar




Effective Source at First Order:

Results

- Applications

Details

2+1 Worldtube, Schwarzschild, Scalar, Circular

2+1 Worldtube, Kerr, Scalar, Circular

2+1 Worldtube, Schwarzschild, Gravity, Circular
Instability in non-radiative modes

2+1 Worldtube, Kerr, Gravity, Circular
Instability in non-radiative modes

3+1 Window Function, Schwarzschild, Scalar,
Self-consistent Evolution

3+1 Window Function, Schwarzschild, Scalar,
Eccentric Geodesic

Authors Reference
Phys. Rev. D 83,
Dolan & Barack 024019
IDIIEV M-I Sl Phys. Rev. D 84,
Wardell 084001
Phys. Rev. D 87,
Dolan & Barack 084066
IBIJEVIBEICd Qcal Unpublished
Wardell Dolan Capra 16
Diener, Vega, Phys. Rev. Lett.
Wardell, Detweiler 108, 191102
(U IR Phys. Rev. D 88,
Diener, Cupp, Haas 084021
Jltoivilelity- A A Phys. Rev. D 95,
Wardell 084043

2+1 Worldtube, Kerr, Scalar
Highly-eccentric Geodesics, Self-force Wiggles




Effective Source:
Interesting Future
Directions at First Order




Effective Source:
Interesting Future
Directions at First Order

% Self-consistent evolutions (see talks
by Peter Diener, Niels Warburton).

Eccentricity
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Effective Source:
Interesting Future
Directions at First Order

% Self-consistent evolutions (see talks
by Peter Diener, Niels Warburton).

+ Kerr (see talk by Jonathan Thornburg)
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Effective Source:
Interesting Future
Directions at First Order

% Self-consistent evolutions (see talks
by Peter Diener, Niels Warburton).

+ Kerr (see talk by Jonathan Thornburg)

+ Effective source for the Regge-
Wheeler equation (see talk by
Jonathan Thompson).
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Effective Source:
Interesting Future
Directions at First Order

% Self-consistent evolutions (see talks
by Peter Diener, Niels Warburton).

+ Kerr (see talk by Jonathan Thornburg)

+ Effective source for the Regge-
Wheeler equation (see talk by
Jonathan Thompson).

+ Effective source in radiation gauge

(4 or ).
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Effective Source:
Interesting Future
Directions at First Order

% Self-consistent evolutions (see talks
by Peter Diener, Niels Warburton).

+ Kerr (see talk by Jonathan Thornburg)

+ Effective source for the Regge-
Wheeler equation (see talk by
Jonathan Thompson).

+ Effective source in radiation gauge

(4 or ).

+ Effective source for Hertz potential
(W, see talk by Leor Barack)?
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Effective Source at Second Order



Effective Source at Second Order
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Second Order Self-force: Timeline

Full Booking Details

BOOKING REFERENCE: D1J8VK
Date Flight No Route Depart Arrive

Wed 07 Nov 2012 BE389 Dublin to Southampton 20:20 21:45

Operated by Flybe
Essentials

Fri 09 Nov 2012 BE388 Southampton to Dublin 18:30 19:55

Operated by Flybe
Essentials

Advance
Passenger N e Change



Second Order Self-force: Timeline

Full Booking Details

BOOKING REFERENCE: D1J8VK

Date Flight No Route Depart Arrive

Wed 07 Nov 2012 BE389 Dublin to Southampton 20:20 21:45

Operated by Flybe

Essentials

Fri 09 Nov 2012 BE388 Southampton to Dublin 18:30 19:55

Operated by Flybe

Essentials

Advance

Flight From To Seat Baggage Insurance Passeng,er Checked In _C.hange
Frequency domain effective source implementation Attachments ~ x =
J Niels Warburton <nielsw@gmail.com> @ 29/11/2012 “~ v
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Challenges at

Second order




Challenges at

Second order

* Second order gravitational self-
force will require high accuracy
= Frequency domain.



Challenges at

Second order

* Second order gravitational self-
force will require high accuracy
= Frequency domain.

* Spherical harmonic modes at
first order finite on world line =
mode-sum regularisation.

First order metric perturbation ~ 1/ (r-ro)



Challenges at

Second order

* Second order gravitational self-
force will require high accuracy
= Frequency domain.

* Spherical harmonic modes at
first order finite on world line =
mode-sum regularisation.
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Challenges at

Second order

* Second order gravitational self-
force will require high accuracy
= Frequency domain.

* Spherical harmonic modes at
first order finite on world line =
mode-sum regularisation.

+* Second order metric more
singular.
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Second order perturbation ~ 1/ (r-rp)?



Challenges at

Second order

* Second order gravitational self-
force will require high accuracy
= Frequency domain.

* Spherical harmonic modes at
first order finite on world line =
mode-sum regularisation.

+* Second order metric more
singular.

# Second order modes diverge
logarithmically.

151

Second order modes ~ log | r-1¢ |



Challenges at

Second order

* Second order gravitational self- ol
force will require high accuracy
= Frequency domain. 1o}

(2)
Im

* Spherical harmonic modes at
first order finite on world line =

mode-sum regularisation. M
Or 1

+ Second order metric more 9.0 9.5 100 105 1.0

Smgulal—‘- Second order modes ~ log | r-ry |

# Second order modes diverge
logarithmically.

* Avoid computing retarded field
on world line = effective source.



Challenges at

Second order

* Also have problems on the
horizon and at infinity, where
the source does not fall off fast

enough.

* Need punctures near horizon
and infinity in order to obtain a | A
finite result. \/ y\

* Derive punctures at infinity from
a post-Minskowski expansion.

+ Punctures near horizon

currently derived ad-hoc by
requiring that they match the
singular behaviour.



Nonlinear gravitational self-force. I. Field outside a small body

Adam Pound!
1School of Mathematics, University of Southampton, Southampton, United Kingdom, SO17 1BJ
(Dated: September 5, 2012)

A small extended body moving through an external spacetime g.g creates a metric perturbation
hap, which forces the body away from geodesic motion in gog. The foundations of this effect,
called the gravitational self-force, are now well established, but concrete results have mostly been
limited to linear order. Accurately modeling the dynamics of compact binaries requires proceeding
to nonlinear orders. To that end, I show how to obtain the metric perturbation outside the body

Nonlinear gravitational self-force: second-order equation of motion

Adam Pound
Mathematical Sciences and STAG Research Centre,
University of Southampton, Southampton, United Kingdom, SO17 1BJ
(Dated: May 25, 2017)

When a small, uncharged, compact object is immersed in an external background spacetime, at
zeroth order in its mass it moves as a test particle in the background. At linear order, its own
gravitational field alters the geometry around it, and it moves instead as a test particle in a certain
effective metric satisfying the linearized vacuum Einstein equation. In the letter [Phys. Rev. Lett.
109, 051101 (2012)], using a method of matched asymptotic expansions, I showed that the same
statement holds true at second order: if the object’s leading-order spin and quadrupole moment
vanish, then through second order in its mass it moves on a geodesic of a certain smooth, locally
causal vacuum metric defined in its local neighbourhood. Here I present the complete details of
the derivation of that result. In addition, I extend the result, which had previously been derived in

A practical, covariant puncture for second-order self-force calculations

Adam Pound and Jeremy Miller
Mathematical Sciences, University of Southampton, Southampton, United Kingdom, SO17 1BJ
(Dated: May 5, 2014)

Accurately modeling an extreme-mass-ratio inspiral requires knowledge of the second-order grav-
itational self-force on the inspiraling small object. Recently, numerical puncture schemes have been
formulated to calculate this force, and their essential analytical ingredients have been derived from
first principles. However, the puncture, a local representation of the small object’s self-field, in each
of these schemes has been presented only in a local coordinate system centered on the small ob-
ject, while a numerical implementation will require the puncture in coordinates covering the entire
numerical domain. In this paper we provide an explicit covariant self-field as a local expansion in

Conservative effect of the second-order gravitational self-force on quasicircular orbits
in Schwarzschild spacetime

Adam Pound
Mathematical Sciences, University of Southampton, Southampton, United Kingdom, SO17 1BJ
(Dated: October 14, 2014)

A compact object moving on a quasicircular orbit about a Schwarzschild black hole gradually
spirals inward due to the dissipative action of its gravitational self-force. But in addition to driving
the inspiral, the self-force has a conservative piece. Within a second-order self-force formalism, I
derive a second-order generalization of Detweiler’s redshift variable, which provides a gauge-invariant
measure of conservative effects on quasicircular orbits. I sketch a frequency-domain numerical

Applying the effective-source approach to frequency-domain self-force calculations

Niels Warburton! and Barry Wardell? !

1School of Mathematical Sciences and Complex & Adaptive Systems Laboratory,
University College Dublin, Belfield, Dublin 4, Ireland
2 Department of Astronomy, Cornell University, Ithaca, NY 14853, USA
(Dated: 28th October 2014)

The equations of motion of a point particle interacting with its own field are defined in terms of
a certain regularized self-field. Two of the leading methods for computing this regularized field are
the mode-sum and effective-source approaches. In this work we unite these two distinct regulariz-
ation schemes by generalizing traditional frequency-domain mode-sum calculations to incorporate
effective-source techniques. For a toy scalar-field model we analytically compute an appropriate
puncture field from which the regularized residual field can be calculated. To demonstrate the

Applying the effective-source approach to frequency-domain self-force calculations:
Lorenz-gauge gravitational perturbations

Barry Wardell"2 and Niels Warburton3:2

! Department of Astronomy, Cornell University, Ithaca, NY 14853, USA
2School of Mathematical Sciences and Complex & Adaptive Systems Laboratory,
University College Dublin, Belfield, Dublin 4, Ireland
SMIT Kavli Institute for Astrophysics and Space Research,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA

With a view to developing a formalism that will be applicable at second perturbative order, we
devise a new practical scheme for computing the gravitational self-force experienced by a point mass
moving in a curved background spacetime. Our method works in the frequency domain and employs
the effective-source approach, in which a distributional source for the retarded metric perturbation
is replaced with an effective source for a certain regularized self-field. A key ingredient of the
calculation is the analytic determination of an appropriate puncture field from which the effective
sonrce and recularized residnal field can be calenlated. Tn addition to its annlication in our effective-

Second-order perturbation theory: problems on large scales

Adam Pound
Mathematical Sciences, University of Southampton, Southampton, United Kingdom, SO17 1BJ
(Dated: October 20, 2015)

In general-relativistic perturbation theory, a point mass accelerates away from geodesic motion
due to its gravitational self-force. Because the self-force is small, one can often approximate the
motion as geodesic. However, it is well known that self-force effects accumulate over time, making
the geodesic approximation fail on long timescales. It is less well known that this failure at large
times translates to a failure at large distances as well. At second perturbative order, two large-
distance pathologies arise: spurious secular growth and infrared-divergent retarded integrals. Both
stand in the way of practical computations of second-order self-force effects.

Utilizing a simple flat-space scalar toy model, I develop methods to overcome these obstacles. The

Second-order perturbation theory: the problem of infinite mode coupling

Jeremy Miller,! Barry Wardell,>3 and Adam Pound!

! Mathematical Sciences and STAG Research Centre,

University of Southampton, Southampton, SO17 1BJ, United Kingdom
2School of Mathematical Sciences and Complex & Adaptive Systems Laboratory,
University College Dublin, Belfield, Dublin 4, Ireland
3 Department of Astronomy, Cornell University, Ithaca, NY 14853, USA
(Dated: August 25, 2016)

Second-order self-force computations, which will be essential in modeling extreme-mass-ratio in-
spirals, involve two major new difficulties that were not present at first order. One is the problem
of large scales, discussed in [Phys. Rev. D 92, 104047 (2015)]. Here we discuss the second diffi-
culty, which occurs instead on small scales: if we expand the field equations in spherical harmonics,
then because the first-order field contains a singularity, we require an arbitrarily large number of
first-order modes to accurately compute even a single second-order mode. This is a generic feature




High Accuracy Numerical Methods

Applying the effective-source approach to frequency-domain self-force calculations

Niels Warburton! and Barry Wardell?:!

1 School of Mathematical Sciences and Complex € Adaptive Systems Laboratory,
University College Dublin, Belfield, Dublin 4, Ireland
2 Department of Astronomy, Cornell University, Ithaca, NY 14853, USA
(Dated: 28th October 2014)

The equations of motion of a point particle interacting with its own field are defined in terms of
a certain regularized self-field. Two of the leading methods for computing this regularized field are
the mode-sum and effective-source approaches. In this work we unite these two distinct regulariz-
ation schemes by generalizing traditional frequency-domain mode-sum calculations to incorporate
effective-source techniques. For a toy scalar-field model we analytically compute an appropriate
puncture field from which the regularized residual field can be calculated. To demonstrate the

Applying the effective-source approach to frequency-domain self-force calculations:
Lorenz-gauge gravitational perturbations

Barry Wardell*? and Niels Warburton? 2

! Department of Astronomy, Cornell University, Ithaca, NY 14853, USA
2School of Mathematical Sciences and Complex & Adaptive Systems Laboratory,
University College Dublin, Belfield, Dublin 4, Ireland
SMIT Kavli Institute for Astrophysics and Space Research,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA

With a view to developing a formalism that will be applicable at second perturbative order, we
devise a new practical scheme for computing the gravitational self-force experienced by a point mass
moving in a curved background spacetime. Our method works in the frequency domain and employs
the effective-source approach, in which a distributional source for the retarded metric perturbation
is replaced with an effective source for a certain regularized self-field. A key ingredient of the
calculation is the analytic determination of an appropriate puncture field from which the effective
sonrce and recnlarized residual field can he calenlated. In addition ta its annlication in onr effective-




High Accuracy Numerical Methods
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Towards second order self-force
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Second Order Punctures and

Effective Source

Nonlinear gravitational self-force. I. Field outside a small body

Adam Pound!
1School of Mathematics, University of Southampton, Southampton, United Kingdom, SO17 1BJ
(Dated: September 5, 2012)

A small extended body moving through an external spacetime g.g creates a metric perturbation
hap, which forces the body away from geodesic motion in gong. The foundations of this effect,
called the gravitational self-force, are now well established, but concrete results have mostly been
limited to linear order. Accurately modeling the dynamics of compact binaries requires proceeding
to nonlinear orders. To that end, I show how to obtain the metric perturbation outside the body

Nonlinear gravitational self-force: second-order equation of motion

Adam Pound
Mathematical Sciences and STAG Research Centre,
University of Southampton, Southampton, United Kingdom, SO17 1BJ
(Dated: May 25, 2017)

When a small, uncharged, compact object is immersed in an external background spacetime, at
zeroth order in its mass it moves as a test particle in the background. At linear order, its own
gravitational field alters the geometry around it, and it moves instead as a test particle in a certain
effective metric satisfying the linearized vacuum Einstein equation. In the letter [Phys. Rev. Lett.
109, 051101 (2012)], using a method of matched asymptotic expansions, I showed that the same
statement holds true at second order: if the object’s leading-order spin and quadrupole moment
vanish, then through second order in its mass it moves on a geodesic of a certain smooth, locally
causal vacuum metric defined in its local neighbourhood. Here I present the complete details of

the derivation of that result. In addition, I extend the result, which had previously been derived in

PHYSICAL REVIEW D 89, 104020 (2014)
Practical, covariant puncture for second-order self-force calculations

Adam Pound and Jeremy Miller

Mathematical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
(Received 7 March 2014; published 13 May 2014)

Accurately modeling an extreme-mass-ratio inspiral requires knowledge of the second-order gravita-
tional self-force on the inspiraling small object. Recently, numerical puncture schemes have been
formulated to calculate this force, and their essential analytical ingredients have been derived from first
principles. However, the “puncture,” a local representation of the small object’s self-field, in each of these
schemes has been presented only in a local coordinate system centered on the small object, while a
numerical implementation will require the puncture in coordinates covering the entire numerical domain. In
this paper we provide an explicit covariant self-field as a local expansion in terms of Synge’s world
function. The self-field is written in the Lorenz gauge, in an arbitrary vacuum background, and in forms
suitable for both self-consistent and Gralla-Wald-type representations of the object’s trajectory. We
illustrate the local expansion’s utility by sketching the procedure of constructing from it a numerically
practical puncture in any chosen coordinate system.

DOI: 10.1103/PhysRevD.89.104020 PACS numbers: 04.20.-q, 04.25.-g, 04.25.Nx, 04.30.Db

Second-order perturbation theory: problems on large scales

Adam Pound
Mathematical Sciences, University of Southampton, Southampton, United Kingdom, SO17 1BJ
(Dated: October 20, 2015)

In general-relativistic perturbation theory, a point mass accelerates away from geodesic motion
due to its gravitational self-force. Because the self-force is small, one can often approximate the
motion as geodesic. However, it is well known that self-force effects accumulate over time, making
the geodesic approximation fail on long timescales. It is less well known that this failure at large
times translates to a failure at large distances as well. At second perturbative order, two large-
distance pathologies arise: spurious secular growth and infrared-divergent retarded integrals. Both
stand in the way of practical computations of second-order self-force effects.

Utilizing a simple flat-space scalar toy model, I develop methods to overcome these obstacles. The
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Second Order Puncture Modes
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Towards second order self-force
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Towards second order self-force
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Second order effective source
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Second order effective source
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Second order effective source
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Second order effective source
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Second order Ricel tensor
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Problem: infinite mode coupling
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Mode coupling

Second-order perturbation theory: the problem of infinite mode coupling

Jeremy Miller,! Barry Wardell,2 and Adam Pound!

! Mathematical Sciences and STAG Research Centre,

University of Southampton, Southampton, SO17 1BJ, United Kingdom
28chool of Mathematical Sciences and Complex & Adaptive Systems Laboratory,
University College Dublin, Belfield, Dublin 4, Ireland
3 Department of Astronomy, Cornell University, Ithaca, NY 14858, USA
(Dated: August 25, 2016)

Second-order self-force computations, which will be essential in modeling extreme-mass-ratio in-
spirals, involve two major new difficulties that were not present at first order. One is the problem
of large scales, discussed in [Phys. Rev. D 92, 104047 (2015)]. Here we discuss the second diffi-
culty, which occurs instead on small scales: if we expand the field equations in spherical harmonics,
then because the first-order field contains a singularity, we require an arbitrarily large number of

first-order modes to accurately compute even a single second-order mode. This is a generic feature
T e B e
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Mode coupling
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Second order Ricel tensor
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Second Order Effective Source
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Second Order Effective Source
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Second order effective source
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Second order effective source
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Towards second order self-force
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Second order regular field (/=0,1=3)
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Valhidation Checks: Source

Coupling formula for 6°R agrees with direct integration for any two input
modes with generic time dependence

Summing up modes of coupling formula to get 4D 6°R agrees with first
summing up modes of h' and then directly computing 4D 6°R, using
numerical data for /4.

ret
Near-particle calculation of 6°R agrees with result of coupling formula
Coupling formula for 8°R satisfies Bianchi identity

Numerical coupling results for 6°R have correct falloff at large r

Numerical coupling results for 6°R agree with near-horizon expansion



Validation Checks: Punctures at
Worldline

Wave equation

hSS cancels 282R[hS )hS] to correct order (~ Ar2 InAr difference, from term ~ Q2 In 0 in hSS)
hSR cancels 282R[hS hR] to correct order (CO with first two terms in hSR)

hOm contains the correct & function

hOZ contains the correct 8 function

hOZ contains the correct & function

Ignoring distributions, hOm js smooth to correct order (CO with first two terms in hém)

i, G i T B ST o e SRR

Ignoring distributions, hOZ is smooth to correct order (CO with first three terms in hOZ)

Gauge condition
/ hdS satisfies gauge condition to correct order (~ Ar In Ar difference, from term ~ 02 In © in)

/ hSR 4 hOm 4 hOZ satisfies gauge condition to correct order (Cl if punctures valid through €V)



Validation Checks: Numerics and
boundary conditions

Correct dependence on parameter k.

Worldtube and window function computations agree with
analytical i = 2 result.

h* and O hH cancel 02R to correct order in f(r) and 1/r.

Agreement between worldtube and window function
computations.

Agreement between results using different combinations of
1 = 1, 3, 6 equations.

Residual field 1s regular at the horizon (i.e.,i =/ and i = 2
agree through order 1(r)).



Towards second order self-force
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Towards second order self-force

Ui~ (a8 () (%) (2]
[h;;zfﬂ B

Mode -sum } Eff. source } [ Eff. source }

- .-




Second order conservative effects

Generalised redshift invariant for circular orbits
[Pound, Phys. Rev. D90, 084039]
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Towards second order self-force
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Towards second order self-force
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Second Order Bondi Mass
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Second Order Irreducible Mass
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Second Order Binding Energy

Second order binding energy can be written as a sum of
contributions from the irreducible mass, Bondi mass, and relation
between energy and specific energy.

2M 3M \ —172
MBind — MBondi _Mirr+ [(1 _ _)<1 _ _) _ 1]
o o
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Second Order Binding Energy
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Validation Checks: Irreducible mass and
formalism

M,,» formula works for expansion of Vaidya around
Schwarzschild.

M, formula works for expansion of Kerr around
Schwarzschild.

M,,» formula works for expansion of moving Vaidya.

M,,» 1s invariant under suitable class of first order gauge
transformations.

M, 1s 1invariant under suitable class of second order gauge
transformations.

| = 2 solution recovers balance law.



Why don’t we agree with First Law?

= We now have a finite answer that we trust, but it
doesn’t agree with the prediction from the first law.

+ Two possibilities:
M, 1s not invariant under suitable class of first order
gauge transformations?

Puncture at horizon has not been derived from a
fundamental principle. Constructed to cancel
divergence and nothing more. A more careful
prescription may be needed (see talk by Kei1 Yamada).



Outstanding 1ssues and questions

+ Higher modes not a problem. Tools are all set up for all modes, have some parts but we have yet to finish the
calculation

+ Horizon punctures
Is there a physically motivated choice?

= Are there other things we could compute in our current setup?
So far, we know how to compute binding energy, AU and dissipative self-force. Any other useful quantities?

+ Is there a PN or NR prediction for Delta U as we define it, or can we adjust what we're doing so that we use
the same definitions?
We can directly use the prediction through 3PN from older papers, but at higher orders we run into
ambiguity in the definition of conservative dynamics. (We have tried using Damour's definition without
success.)

+ Dissipative effects appear even in seemingly "conservative" quantities like the instantaneous binding energy.
+ Can this be made to work in other gauges or with other variables (Teukolsky, RWZ)?

+ How should long-term evolution be tackled?



