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Gravitational Self-force
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Substitute expansion into Einstein 
equation
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Obtain equations at each order in 𝝐, 
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✤ Compute first order metric perturbation sourced by a point particle with 
retarded (outgoing radiation) boundary conditions at horizon and infinity.

✤ Subtract Detweiler-Whiting singular (S) field from retarded (ret) field to 
obtain finite regular (R) field.

Self-force at First Order

□ h̄ret
ab + 2Ca

c
b
dh̄ret

cd + gabZd
;d − 2Z(a;b) =

−16πμ∫ ga′�(aua′�gb)b′�ub′� −gδ4(x, z(τ))dτ
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✤ Compute first order metric perturbation sourced by a point particle with 
retarded (outgoing radiation) boundary conditions at horizon and infinity.

✤ Subtract Detweiler-Whiting singular (S) field from retarded (ret) field to 
obtain finite regular (R) field.

Self-force at First Order
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Eμν[h1
ret] = − 16πT̄μν[γ]



✤ Compute second order metric perturbation sourced by first order metric 
perturbation with appropriate boundary conditions at horizon and infinity.

✤ Subtract second order singular (S) field from retarded (ret) field to obtain 
finite regular (R) field.

Self-force at Second Order
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Eαβ[h2
ret] = 2[− 1

2 hμν(2hμ(α;β)ν − hαβ;μν − hμν;αβ)



✤ Compute second order metric perturbation sourced by first order metric 
perturbation with appropriate boundary conditions at horizon and infinity.

✤ Subtract second order singular (S) field from retarded (ret) field to obtain 
finite regular (R) field.

Self-force at Second Order

h̄2
R = h̄2

ret − h̄2
S

Eμν[h2
ret] = 2δ2Rμν[h1

ret, h1
ret]



Self-force computation strategies

✤ Several methods have emerged for computing         , dealing with the 
numerical issues of point sources, singular fields.

✤ These broadly fall into three different categories (+ dissipative approx)
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Effective Source Regularisation



✤ Derive an evolution equation for  
by moving       to right hand side and 
treating it as an effective source. 
Barack and Golbourn, Phys. Rev. D 76, 044020 
Detweiler and Vega, Phys. Rev. D 77, 084008 

✤ Always work with        instead of        

✤ No distributional sources and no 
singular fields. 

✤ If       is chosen appropriately, then 
we can directly use       in the 
worldline equations of motion.

Effective Source at First Order
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Effective Source at First Order
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First Order Residual Field

Wardell & Warburton, Phys. Rev. D 92, 084019 



✤ If       is exactly the Detweiler-
Whiting singular field,       is a 
solution of the homogeneous 
wave equation.

✤ If       is only approximately the 
Detweiler-Whiting singular 
field, then the equation for        
has an effective source, 

✤               finite, but of limited 
differentiability on worldline.

Smoothness of Effective Source

�R

h̄1
S

h̄1
S

h̄1
R

Seff
μν [h1

S]

Seff
μν [h1

S]

Wardell, Vega, Thornburg, Diener,  Phys. Rev. D 85, 104044



Window function and Worldtube

✤ Detweiler-Whiting singular field defined through a Hadamard form 
which is not defined globally.

✤ Need to introduce a method for restricting the singular field to a 
region near the particle.

✤ Two equivalent [Phys. Rev. D 89, 044046] approaches: window 
function and worldtube.

⇤�R = �⇤(W�S)

✤ Window function: multiply 
the singular field by a function 
which is 1 at the particle and 
goes to 0 far away:

✤ Worldtube: Solve for regular 
field inside, outside solve for 
retarded field. Boundary 
condition at edge of tube:

h̄2
R = h̄2

ret − h̄2
S



Window function and Worldtube

⇤�R = �⇤(W�S)

✤ Window function: multiply 
the singular field by a function 
which is 1 at the particle and 
goes to 0 far away:

✤ Worldtube: Solve for regular 
field inside, outside solve for 
retarded field. Boundary 
condition at edge of tube:

h̄2
R = h̄2

ret − h̄2
S

FIG. 2: Field modes (m = 0, 1, 2, 5) on a constant time slice (at t = t
max

) for circular orbits at r
0

= 10M , for
a range of Kerr parameters (a/M = �0.9,�0.5, 0, 0.5, 0.9). The left plots show field modes at fixed ✓ = ⇡/2
and the right plots show field modes at fixed r = r

0

. Inside the worldtube we show both the residual field
 ̂m

R (forming the ‘trough’) and the full retarded field  ̂m, which is divergent on the worldline. We note that
the rotation rate a/M has only a subtle e↵ect on the field profile.

three slices: (i) t = t
max

, ✓ = ⇡/2, i.e., in the equatorial plane, (ii) t = t
max

, r⇤ = r⇤0, i.e., from
pole to pole, crossing the worldline, and (iii) r⇤ = r⇤0, ✓ = ⇡/2, i.e., along the worldline.

Fig. 2 shows typical m-mode contributions to the field along the constant-t slices (i) and (ii),
for an orbit at r

0

= 10M and a range of Kerr parameters a. The worldtube is visible as a central
‘trough’; inside the tube, we show both the residual  ̂m

R and the full field  ̂m (which diverges
logarithmically as r ! r

0

, ✓ ! ⇡/2). These plots are similar to those for the Schwarzschild
implementation (see Fig. 4 in Paper I). We note that the e↵ect of black hole rotation upon the
field mode profiles is quite subtle, although it has a more profound e↵ect on the SF.

Figure 3 shows plots of  ̂m
R, Fm

r and Fm
� as functions of t on the worldline [i.e., on slice (iii)],

for runs with r
0

= 10M , a = 0.5M and modes m = 0, 2, 4 and 6. After an initial burst of
junk radiation (due to imperfect initial conditions, Sec. IVC), the modal quantities settle towards
steady-state values. Visible in the figures are two types of transients: Initially, there are regular
high-frequency oscillations (for m 6= 0) which may be identified as quasi-normal ringing (indeed,the
ringing frequency is proportional to m as expected, and the exponential decay rate of the ringing
seems roughly independent of m, also as expected). At later times the modes exhibit a second type
of transient behavior: a power-law decay with an m-dependent exponent. In Paper I (Sec. IVA5
with, e.g., Fig. 10) we explored this power-low behavior in some detail, and demonstrated that, by
fitting the decay of the field with an asymptotic model, we can extrapolate to t ! 1 to extract a
steady-state value. We implement the same method here.
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Effective Source at First Order: 
Results - Numerical Techniques

Authors Reference Method Case
Barack & 
Golbourn

Phys. Rev. D 76, 
044020 2+1 Worldtube Scalar

Vega & 
Detweiler

Phys. Rev. D 77, 
084008 1+1 Window Scalar

Lousto & 
Nakano 

Class. Quantum 
Grav. 25, 145018

2+1 Window (not based on 
Detweiler-Whiting) Scalar

Barack, 
Golbourn, Sago

Phys. Rev. D 76, 
124036 2+1 Worldtube Gravity 

Vega, Diener, 
Tichy, Detweiler

Phys.Rev. D 80, 
084021   3+1 Window Scalar

Warburton & 
Wardell

Phys. Rev. D 89, 
044046 

Frequency Domain Worldtube & 
Window

Schwarzschild 
scalar

Wardell & 
Warburton

Phys. Rev. D 92, 
084019 

Frequency Domain Worldtube & 
Window

Schwarzschild 
gravity



Effective Source at First Order: 
Results - Analytical Techniques

Authors Reference Case
Vega, Wardell, 

Diener 
Class. Quantum Grav. 28 

134010 Scalar, geodesic

Wardell, Vega, 
Thornburg, Diener Phys. Rev. D 85, 104044 Kerr, gravity, geodesic

Heffernan, Ottewill, 
Warburton, 

Wardell, Diener

Unpublished, see
Anna Heffernan’s talk Non-geodesic/accelerated scalar



Effective Source at First Order: 
Results - Applications

Authors Reference Details

Dolan & Barack Phys. Rev. D 83, 
024019 2+1 Worldtube, Schwarzschild, Scalar, Circular

Dolan, Barack, 
Wardell

Phys. Rev. D 84, 
084001 2+1 Worldtube, Kerr, Scalar, Circular

Dolan & Barack Phys. Rev. D 87, 
084066 

2+1 Worldtube, Schwarzschild, Gravity, Circular
Instability in non-radiative modes

Dolan, Barack & 
Wardell

Unpublished
Dolan Capra 16

2+1 Worldtube, Kerr, Gravity, Circular
Instability in non-radiative modes

Diener, Vega, 
Wardell, Detweiler

Phys. Rev. Lett. 
108, 191102 

3+1 Window Function, Schwarzschild, Scalar, 
Self-consistent Evolution

Vega, Wardell, 
Diener, Cupp, Haas

Phys. Rev. D 88, 
084021

3+1 Window Function, Schwarzschild, Scalar, 
Eccentric Geodesic

Thornburg & 
Wardell

Phys. Rev. D 95, 
084043 

2+1 Worldtube, Kerr, Scalar
Highly-eccentric Geodesics, Self-force Wiggles



Effective Source: 
Interesting Future 
Directions at First Order



Effective Source: 
Interesting Future 
Directions at First Order

✤ Self-consistent evolutions (see talks 
by Peter Diener, Niels Warburton).
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Effective Source: 
Interesting Future 
Directions at First Order

✤ Self-consistent evolutions (see talks 
by Peter Diener, Niels Warburton).

✤ Kerr (see talk by Jonathan Thornburg)

Wiggles!

Higher-eccentricity orbit:
(a, p, e) = (0.99, 7M , 0.9)
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Effective Source: 
Interesting Future 
Directions at First Order

✤ Self-consistent evolutions (see talks 
by Peter Diener, Niels Warburton).

✤ Kerr (see talk by Jonathan Thornburg)

✤ Effective source for the Regge-
Wheeler equation (see talk by 
Jonathan Thompson). -1.0 -0.5 0.0 0.5 1.0
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Effective Source: 
Interesting Future 
Directions at First Order

✤ Self-consistent evolutions (see talks 
by Peter Diener, Niels Warburton).

✤ Kerr (see talk by Jonathan Thornburg)

✤ Effective source for the Regge-
Wheeler equation (see talk by 
Jonathan Thompson).

✤ Effective source in radiation gauge 
(ψ4 or ψ0).
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Effective Source: 
Interesting Future 
Directions at First Order

✤ Self-consistent evolutions (see talks 
by Peter Diener, Niels Warburton).

✤ Kerr (see talk by Jonathan Thornburg)

✤ Effective source for the Regge-
Wheeler equation (see talk by 
Jonathan Thompson).

✤ Effective source in radiation gauge 
(ψ4 or ψ0).

✤ Effective source for Hertz potential 
(Ψ, see talk by Leor Barack)?
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Effective Source at Second Order



Effective Source at Second Order

�2Rµ⌫ [h, h] ⌘� 1
2h

µ⌫(2hµ(↵;�)⌫ � h↵�;µ⌫ � hµ⌫;↵�)

+ 1
4h

µ⌫
;↵hµ⌫;� + 1

2h
µ
�
;⌫(hµ↵;⌫ � h⌫↵;µ)

� 1
2 h̄

µ⌫
;⌫(2hµ(↵;�) � h↵�;µ)

Eμν[h1
ret] = − 16πT̄μν[γ]

Eμν[h2
R] = 2δ2Rμν[h1

ret, h1
ret] − Eμν[h2

S]



Second Order Self-force: Timeline
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Challenges at 
Second order



✤ Second order gravitational self-
force will require high accuracy  
⇒ Frequency domain.
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✤ Second order gravitational self-
force will require high accuracy  
⇒ Frequency domain.

✤ Spherical harmonic modes at 
first order finite on world line ⇒ 
mode-sum regularisation.

Challenges at 
Second order

First order metric perturbation ~ 1/(r-r0)
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✤ Second order gravitational self-
force will require high accuracy  
⇒ Frequency domain.

✤ Spherical harmonic modes at 
first order finite on world line ⇒ 
mode-sum regularisation.

Challenges at 
Second order

First order modes ~ |r-r0|/(r-r0)
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✤ Second order gravitational self-
force will require high accuracy  
⇒ Frequency domain.

✤ Spherical harmonic modes at 
first order finite on world line ⇒ 
mode-sum regularisation.

✤ Second order metric more 
singular.

Challenges at 
Second order

Second order perturbation ~ 1/(r-r0)2
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✤ Second order gravitational self-
force will require high accuracy  
⇒ Frequency domain.

✤ Spherical harmonic modes at 
first order finite on world line ⇒ 
mode-sum regularisation.

✤ Second order metric more 
singular.

✤ Second order modes diverge 
logarithmically.

Challenges at 
Second order

Second order modes ~ log|r-r0|
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✤ Second order gravitational self-
force will require high accuracy  
⇒ Frequency domain.

✤ Spherical harmonic modes at 
first order finite on world line ⇒ 
mode-sum regularisation.

✤ Second order metric more 
singular.

✤ Second order modes diverge 
logarithmically.

✤ Avoid computing retarded field 
on world line ⇒ effective source.

Challenges at 
Second order

Second order modes ~ log|r-r0|
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Challenges at 
Second order
✤ Also have problems on the 

horizon and at infinity, where 
the source does not fall off fast 
enough.

✤ Need punctures near horizon 
and infinity in order to obtain a 
finite result.

✤ Derive punctures at infinity from 
a post-Minskowski expansion.

✤ Punctures near horizon 
currently derived ad-hoc by 
requiring that they match the 
singular behaviour.
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High Accuracy Numerical Methods



High Accuracy Numerical Methods

□ h̄ab + 2Ca
c
b
dh̄cd = − 16πTab

∇ahab = 0
Lorenz gauge

h̄(i)
ℓm(t, r) = r

μ a(i)
ℓ

∫
2π

0 ∫
π

0
h̄τκητμηκνY(i)ℓm

μν * dΩ

Spherical-harmonic and Fourier  
mode decomposition

h̄(i)
ℓm(t, r) = 1

2π ∫
∞

−∞
h̄(i)

ℓm(ω, r)e−iωtdt

□sc
ℓm h̄(i)

ℓm − 4f −2ℳ(i)
( j)h̄( j)

ℓm = $(i)
ℓm

Frequency-domain Lorenz gauge
equations with effective source

Solve for h̄R



Towards second order self-force

Eff. source

h̃lm

h(1)ret
lm

Mode-sum

h(1)R

h(1)S

h(1)S
lm



Second Order Punctures and 
Effective Source

Practical, covariant puncture for second-order self-force calculations

Adam Pound and Jeremy Miller
Mathematical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom

(Received 7 March 2014; published 13 May 2014)

Accurately modeling an extreme-mass-ratio inspiral requires knowledge of the second-order gravita-
tional self-force on the inspiraling small object. Recently, numerical puncture schemes have been
formulated to calculate this force, and their essential analytical ingredients have been derived from first
principles. However, the “puncture,” a local representation of the small object’s self-field, in each of these
schemes has been presented only in a local coordinate system centered on the small object, while a
numerical implementation will require the puncture in coordinates covering the entire numerical domain. In
this paper we provide an explicit covariant self-field as a local expansion in terms of Synge’s world
function. The self-field is written in the Lorenz gauge, in an arbitrary vacuum background, and in forms
suitable for both self-consistent and Gralla-Wald-type representations of the object’s trajectory. We
illustrate the local expansion’s utility by sketching the procedure of constructing from it a numerically
practical puncture in any chosen coordinate system.

DOI: 10.1103/PhysRevD.89.104020 PACS numbers: 04.20.-q, 04.25.-g, 04.25.Nx, 04.30.Db

I. INTRODUCTION

Observation of extreme-mass-ratio inspirals (EMRIs) is
a central plank in plans for a space-based gravitational-
wave detector [1]. EMRIs, in which a compact object of
mass m orbits about and eventually falls into a massive
black hole of mass M ≫ m, will offer a unique probe of
strong-field dynamics and a detailed map of the spacetime
geometry near a black hole. However, an inspiral occurs on
the very long dynamical time scale M2=m, and to extract
information about an inspiral from an observed waveform,
one will require a model that accurately relates the wave-
form to the motion over that long time. For a physically
relevant mass ratio m=M ¼ 10−6, this translates to requir-
ing an accurate model covering ∼106 wave cycles.
Because of the drastically dissimilar length scales in

these systems, numerical relativity cannot adequately
model them even on short time scales. And because of
the strong fields and large velocities in play, post-
Newtonian theory is inapplicable. Instead, the most promi-
nent method of tackling the problem has been to apply the
gravitational self-force formalism [2,3], in which the small
object is treated as the source of a perturbation hμν ∼m on
the background spacetime gμν of the large black hole, and
hμν exerts a force back on the small object, accelerating it
away from test-particle, geodesic motion in gμν. It has long
been known [4] that within this formalism, accurately
modeling an inspiral on the long time scale ∼M2=m
requires knowledge of the smaller object’s acceleration
to second order in m, meaning garden variety linear
perturbation theory is insufficient. The veracity of this
claim can be seen from a simple scaling argument: if the
small object’s acceleration contains an error of order
δa ∼m2=M3, then after a time M2=m the error in its
position is δz ∼ t2δa ∼M (setting c ¼ G ¼ 1, as we do

throughout this paper). Therefore, to ensure that the errors
remain small (i.e., δz ≪ M), we must allow no error in the
acceleration at order m2. In other words, we must account
for the second-order self-force.1

In addition to its applications in the EMRI problem, the
second-order self-force promises to be a useful tool in
modeling other binary systems. At first order, numerical
self-force data have been fruitfully used to fix high-order
terms and otherwise free parameters in post-Newtonian
[6–9] and effective one-body [10–13] models, and the same
strategy could be employed at second order. Perhaps more
strikingly, at first order, there is compelling evidence that
the self-force formalism can be made accurate well outside
the extreme mass-ratio regime [8,14], which suggests that
at second order the self-force could be used to directly
model intermediate mass-ratio and potentially even com-
parable-mass binaries with reasonable accuracy.
After several exploratory studies of the second-order

problem [4,15–17], these prospects have recently been
brought substantially closer to realization, and the essential
analytical ingredients necessary for concrete calculations of
the second-order self-force are now available [18–21].
These ingredients are

(i) A local expression for the small object’s self-
field hSμν

(ii) An equation of motion for the small object’s center
of mass in terms of a certain effective field hRμν

Both results were derived from the Einstein equations via
rigorous methods of matched asymptotic expansions devel-
oped in Refs. [16,22]; for an overview, see the review [3] or

1A subtler scaling argument [5] shows that only a specific
piece of the second-order force is needed: the orbit-averaged
dissipative piece, which causes the largest long-term changes in
the orbit.
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any well-behaved space of functions; see Ref. [53] for a
recent discussion. Hence, the problem must be tackled
via an e↵ective, regular field equation such as (26).

B. Conservative dynamics

We are interested in the retarded solution to the cou-
pled system made up of Eqs. (1), (25), and (26). From
this solution, I wish to extract the conservative dynamics.
I now set about doing that.

In the coupled system, the retarded solution is rep-
resented by a triplet (zµ, hR

µ⌫

, h
µ⌫

). My goal is to con-

struct a certain “subsystem,” denoted by (ẑµ, ĥR

µ⌫

), that

is purely conservative. The pair (ẑµ, ĥR

µ⌫

) will be such

that ẑµ is precisely circular, ĥR

µ⌫

is time symmetric in an
appropriate sense, and ẑµ is a geodesic of the e↵ective
metric g̃

µ⌫

= g
µ⌫

+ ĥR

µ⌫

. This construction allows me
to define a redshift variable ũt by normalizing the four-
velocity in the same metric in which the orbit is geodesic.
Later, in Sec. VI, I will describe a construction that uses
hR

µ⌫

instead of ĥR

µ⌫

.
I first consider the consequences of replacing the qua-

sicircular orbit zµ with a precisely circular orbit ẑµ; this
can be thought of heuristically as “turning o↵” dissipa-
tion, although the ambiguity in that phrase will become
clear below. After working out the broad features of the
retarded field corresponding to a puncture moving on ẑµ,
I then extract a time-symmetrized e↵ective metric from
the retarded field and specify ẑµ to be a geodesic of that
metric.

1. Retarded field with a circular source

There is considerable gauge freedom within the Lorenz
gauge, meaning the conservative orbit can take multiple
coordinate forms. I assume the particular gauge used
is ‘nice’, in the sense that the circular orbit ẑµ can be
parametrized in the manifestly circular form (4). The
four-velocity ûµ is then given by ûµ = Ûkµ, as previewed
in Eq. (7), with Û ⌘ dt

d⌧

= ût.
To study the retarded field corresponding to this or-

bit,3 I leave the functionals hn

µ⌫

[z] and hRn

µ⌫

[z] unchanged,
simply replacing zµ with ẑµ. That is, the fields satisfy
the puncture scheme composed of Eqs. (25) and (26),
with the puncture moving on ẑµ instead of zµ. The en-
tire system then inherits the orbit’s helical symmetry. In
other words, the metric perturbations satisfy the Killing

3 For simplicity, I assume the retarded field in the Lorenz gauge is
unique, with no possibility of alteration by gauge modes. That
is, I assume the equation Eµ⌫ [hn] = Sn

µ⌫ has a unique retarded
solution for each source Sn

µ⌫ , although I am unaware of a proof
of that proposition in Schwarzschild.

equations

L
k

h1

µ⌫

[ẑ] = 0, L
k

h2

µ⌫

[ẑ] = 0, (33)

and likewise for hRn

µ⌫

and hSn

µ⌫

. On ẑµ, these equations
can be written as

û⇢hR1

µ⌫,⇢

= 0, û⇢hR2

µ⌫,⇢

= 0. (34)

These symmetries can be established concretely from
that of the orbit. The source of the first-order equation
in the form (28), evaluated in Schwarzschild coordinates,
reads

T 1

µ⌫

[ẑ] =
mû

µ

û
⌫

r̂2Û
�(r � r̂)�(✓ � ⇡/2)�(�� ⌦t), (35)

which can be decomposed into ordinary scalar spherical
harmonics as

T 1

µ⌫

[ẑ] =
mû

µ

û
⌫

r̂2Û
�(r� r̂)

X

`m

Y ⇤
`m

(⇡/2,⌦t)Y
`m

(✓A), (36)

where ✓A = (✓,�). This source has a time dependence
e�im⌦t, and from its form one can infer that the retarded
solution h1

µ⌫

has an expansion

h1

µ⌫

(t, r, ✓A; ẑ) =
X

i`m

h
1i`m

(r; r̂)e�im⌦tY i`m

µ⌫

(r, ✓A),

(37)
where h

1i`m

satisfies the outgoing wave condition h
1i`m

⇠
e

ikr

⇤

r

at large r and the ingoing wave condition h
1i`m

⇠
e�ikr

⇤
at the horizon; here r⇤ is the tortoise coordinate.

As in Sec. II, variables before a semicolon indicate the
point at which the field is evaluated, while those after
it indicate dependence on the source orbit. Y i`m

µ⌫

are
the tensor spherical harmonics defined by Barack and
Lousto [54], but any choice of tensor spherical harmonics
would do. Each of the harmonics depends on � only
through an exponential eim�, and to bring out the form
of h1

µ⌫

, I use that fact to rewrite Eq. (37) as

h1

µ⌫

(t, r, ✓A; ẑ) =
X

i`m

H
1i`m

(r; r̂)eim(��⌦t)P i`m

µ⌫

(✓), (38)

with some appropriate functions H
1i`m

and P i`m

µ⌫

. In the
form (38), h1

µ⌫

is manifestly helically symmetric. Natu-
rally, hS1

µ⌫

and hR1

µ⌫

each possess this symmetry, and so
hR1

µ⌫

= constant on the worldline ẑµ, where � = ⌦t.
Similar considerations imply the helical symmetry of

h2

µ⌫

[ẑ]. We need only establish the symmetry of T 2

µ⌫

[ẑ]
and �2R

µ⌫

. The decomposition of T 2

µ⌫

[ẑ] is essentially
identical to that of T 1

µ⌫

, so I focus on �2R
µ⌫

[h1, h1]. By
substituting the decomposition of h1

µ⌫

from Eq. (37) into
Eq. (27), we can see that �2R

µ⌫

[h1, h1] has the form
of a sum over helically symmetric terms of the form
ei(m

0
+m

00
)(��⌦t). In fact, �2R

µ⌫

[h1, h1] has a harmonic
expansion

�2R
µ⌫

[h1, h1] =
X

i`m

�2R
i`m

(r; r̂)e�im⌦tY i`m

µ⌫

(r, ✓A)

(39)
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with radial functions given by a coupling formula of the
form

�2R
i`m

=
X

i

0
`

0
m

0

i

00
`

00
m

00

Di

0
`

0
m

0
i

00
`

00
m

00

i`m

[h
1i

0
`

0
m

0 , h
1i

00
`

00
m

00 ] , (40)

where Di

0
`

0
m

0
i

00
`

00
m

00

i`m

is a bilinear di↵erential operator.
The explicit, lengthy expressions in this coupling formula
will be given in a future publication [44]. Based on the
helical symmetry of its source, h2

µ⌫

can be expanded as

h2

µ⌫

(t, r, ✓A; ẑ) =
X

i`m

h
2i`m

(r; r̂)e�im⌦tY i`m

µ⌫

(r, ✓A) (41)

and put in the manifestly helically symmetric form

h2

µ⌫

(t, r, ✓A; ẑ) =
X

i`m

H
2i`m

(r; r̂)eim(��⌦t)P i`m

µ⌫

(✓), (42)

and likewise for hS2

µ⌫

and hR2

µ⌫

.

2. Time-symmetrized e↵ective metric

At this point I still have not specified the equation of
motion determining ẑµ; I have merely stated that the
orbit is circular. Because I have neglected all the dis-
sipative forces in Eq. (1), clearly ẑµ cannot satisfy the
geodesic equation (3) in the e↵ective metric g

µ⌫

+hR

µ⌫

[ẑ],
which will include dissipative terms. I now construct an
e↵ective metric g̃

µ⌫

[ẑ] = g
µ⌫

+ ĥR

µ⌫

[ẑ] in which ẑµ can be
made a geodesic.
If second-order e↵ects are ignored, the conservative

piece of Eq. (2) is uniquely defined by constructing the
force from a half-retarded-plus-half-advanced metric per-
turbation, and the orbit is a geodesic of the e↵ective met-
ric corresponding to that perturbation. Taking this as
my inspiration, I follow an analogous procedure to define
ĥR

µ⌫

.
Let h1

µ⌫

[ẑ] ⌘ h1ret

µ⌫

[ẑ] be the retarded solution to

Eq. (28) with source T 1

µ⌫

[ẑ], and let hadv

µ⌫

[ẑ] be the ad-
vanced solution. The harmonic modes of these two so-
lutions are related in a simple way. Referring to the
form (37), I note that once e�im⌦tY i`m

µ⌫

has been factored

out of Eq. (28), the radial functions hret/adv

1i`m

(r) satisfy a
linear di↵erential equation with real coe�cients and a
real source. The di↵erence between the two solutions is
produced solely by a complex conjugation of the bound-
ary conditions: the retarded solution satisfies the out-
going wave condition h

1i`m

/ eikr
⇤
at infinity and the

ingoing wave condition h
1i`m

/ e�ikr

⇤
at the horizon,

while the advanced solution satisfies the complex conju-
gate of these conditions. It follows that the modes of the
two solutions are related by4

hadv

1i`m

= hret⇤
1i`m

, (43)

4 This argument is due to Leor Barack.

where the asterisk denotes complex conjugation. There-
fore the radial coe�cients in the half-retarded-plus-half-
advanced solution, ĥ1

µ⌫

[ẑ] = 1

2

h1ret

µ⌫

[ẑ] + 1

2

h1adv

µ⌫

[ẑ], are

given by ĥ
1i`m

= 1

2

(h
1i`m

+ h⇤
1i`m

). Here I am interested
not in this global field, but in an e↵ective metric in a
neighbourhood of the worldline. Hence, corresponding
to the half-retarded-plus-half-advanced field I introduce
a regular field ĥR1

µ⌫

=
P

i`m

ĥR

1i`m

e�im⌦tY i`m

µ⌫

with radial
coe�cients

ĥR

1i`m

⌘ 1

2
(hR

1i`m

+ hR⇤
1i`m

). (44)

Now I do the same for the regular field at second or-
der. I consider the retarded solution to Eq. (26), with
�2R

µ⌫

[h1, h1] constructed from the first-order retarded
field, and with the second-order singular field that in-
volves hR1

µ⌫

in Eq. (23), not ĥR1

µ⌫

. From the regular field
hR2

µ⌫

in this solution, I define a time-symmetrized regular

field ĥR2

µ⌫

with radial coe�cients

ĥR

2i`m

⌘ 1

2
(hR

2i`m

+ hR⇤
2i`m

). (45)

This can be loosely thought of as the regular field cor-
responding to the half-retarded-plus-half-advanced solu-
tion to Eq. (26), but for reasons I discuss in Sec. VI, it
is unlikely that such a solution would be globally well
behaved.
The time-symmetrized regular fields ĥRn

µ⌫

together de-

fine an e↵ective metric g̃
µ⌫

= g
µ⌫

+ ĥR

µ⌫

, with

ĥR

µ⌫

⌘ ✏ĥR1

µ⌫

[ẑ] + ✏2ĥR2

µ⌫

[ẑ]. (46)

This e↵ective metric, unlike g
µ⌫

+ hR

µ⌫

[z], does not sat-
isfy the vacuum Einstein equation through second or-
der. It does not even satisfy the vacuum equation in the
sense that g

µ⌫

+hR

µ⌫

[ẑ] does (i.e., up to dissipation-driven
changes in zµ). One can infer this from the fact that
hR1

µ⌫

, not ĥR1

µ⌫

, is used in the source for Eq. (26), meaning

ĥR2

µ⌫

will satisfy E
µ⌫

[ĥR2] = 2�2R
µ⌫

[hR1, hR1] rather than

E
µ⌫

[ĥR2] = 2�2R
µ⌫

[ĥR1, ĥR1].

Nevertheless, ĥR

µ⌫

meets our needs: it is a time-
symmetric piece of the retarded field h

µ⌫

[ẑ], and ẑµ can
be made a geodesic of the associated metric g̃

µ⌫

. I will
now verify the latter fact by writing the geodesic equa-
tion in the form (1), but with ẑµ and ĥR

µ⌫

in place of zµ

and hR

µ⌫

, and checking that a circular orbit is a consistent
solution. For concreteness, I rewrite the equation here as

D2ẑµ

d⌧2
= F̂µ[ẑ], (47)

where F̂µ[ẑ] is given by Eq. (2) with the replacement
hR

µ⌫

! ĥR

µ⌫

. Explicitly evaluating the covariant deriva-
tives on the left-hand side leads to the algebraic equation

�µ
r

�r

uu

= F̂µ[ẑ], (48)



Problem: infinite mode coupling

3 4 5 6 7 8 9

0

1

2

3

4

r

d2
R
Δl

RetRet



Mode coupling



3 4 5 6 7 8 9

0.00

0.05

0.10

0.15

r

d2
R
Δl

RR

3 4 5 6 7 8 9

-0.020

-0.015

-0.010

-0.005

0.000

r

d2
R
Δl

RS

3 4 5 6 7 8 9

-0.005

0.000

0.005

0.010

0.015

0.020

r

d2
R
Δl

SR

3 4 5 6 7 8 9

0

1

2

3

4

r

d2
R
Δl

SS

3 4 5 6 7 8 9

0

1

2

3

4

r

d2
R
Δl

RetRet

3 4 5 6 7 8 9

0

1

2

3

4

r

d2
R
Δl

RR+RS+SR+SS

Δℓmax = 0
Δℓmax = 5
Δℓmax = 10
Δℓmax = 15
Δℓmax = 20
Δℓmax = 25
Δℓmax = 30
Δℓmax = 35
Δℓmax = 40

Mode coupling



3 4 5 6 7 8 9

10-9

10-7

10-5

0.001

0.100

r

1-
d2
R
Δl
/d
2R
30

RR

3 4 5 6 7 8 9

10-9

10-7

10-5

0.001

0.100

r

1-
d2
R
Δl
/d
2R
30

RS

3 4 5 6 7 8 9

10-9

10-7

10-5

0.001

0.100

r

1-
d2
R
Δl
/d
2R
30

SR

3 4 5 6 7 8 9

10-9

10-7

10-5

0.001

0.100

r

1-
d2
R
Δl
/d
2R
30

SS

3 4 5 6 7 8 9

10-9

10-7

10-5

0.001

0.100

r

1-
d2
R
Δl
/d
2R
30

RetRet

3 4 5 6 7 8 9

10-9

10-7

10-5

0.001

0.100

r

1-
d2
R
Δl
/d
2R
30

RR+RS+SR+SS

Δℓmax = 0
Δℓmax = 5
Δℓmax = 10
Δℓmax = 15
Δℓmax = 20
Δℓmax = 25
Δℓmax = 30
Δℓmax = 35
Δℓmax = 40

Mode coupling



Second order Ricci tensor

�2R↵� [h
1ret, h1ret] =

�2R↵� [h
1R, h1R]

+ 2�2R↵� [h
1R, h1S]

+ �2R↵� [h
1S, h1S]

mode coupling

mode coupling

mode decomposition (c.f. hS2)



Second Order Effective Source

δ2R(h(1)S , h(1)S)
�(h(2)S)
δ2R(h(1)S , h(1)S) -�(h(2)S)

4 5 6 7 8

0.001

0.100

10

1000

r

S
ec
on
d
or
de
rs
ou
rc
e

Second order source for i=1, l=0, m=0



Second Order Effective Source

10-4 0.001 0.010 0.100 1 10 100 1000
10-12

10-10

10-8

10-6

10-4

0.01

1

100

r f(r)/M



Eμν[h1
ret] = − 16πT̄μν[γ]

Eμν[h2
R] = 2δ2Rμν[h1

ret, h1
ret] − Eμν[h2

S]

�2R↵� [h, h] ⌘� 1
2h

µ⌫(2hµ(↵;�)⌫ � h↵�;µ⌫ � hµ⌫;↵�)

+ 1
4h

µ⌫
;↵hµ⌫;� + 1

2h
µ
�
;⌫(hµ↵;⌫ � h⌫↵;µ)

� 1
2 h̄

µ⌫
;⌫(2hµ(↵;�) � h↵�;µ)

Second order effective source

✓ ✓
✓✓



Eμν[h1
ret] = − 16πT̄μν[γ]

Eμν[h2
R] = 2δ2Rμν[h1

ret, h1
ret] − Eμν[h2

S]

�2R↵� [h, h] ⌘� 1
2h

µ⌫(2hµ(↵;�)⌫ � h↵�;µ⌫ � hµ⌫;↵�)

+ 1
4h

µ⌫
;↵hµ⌫;� + 1

2h
µ
�
;⌫(hµ↵;⌫ � h⌫↵;µ)

� 1
2 h̄

µ⌫
;⌫(2hµ(↵;�) � h↵�;µ)

Second order effective source

✓ ✓
✓✓ ✓



Eff. source

Towards second order self-force

Eff. source

h̃lm

h(1)ret
lm

Mode-sum

h(1)R

h(1)S
lm

h(1)S

h(2)S
lm

h(2)S
H h(2)S

r0
h(2)S

∞



Eff. source

Towards second order self-force

Eff. source

h̃lm

h(1)ret
lm

Mode-sum

h(1)R

h(1)S
lm

h(1)S

h(2)S
lm

h(2)S
H h(2)S

r0
h(2)S

∞

Eff. source



Eff. source

Towards second order self-force

Eff. source

h̃lm

h(1)ret
lm

Mode-sum

h(1)R

h(1)S
lm

h(1)S

h(2)S
lm

h(2)S
H h(2)S

r0
h(2)S

∞

Eff. source

h(2)Rh(2)R



Second order regular field (l=0, i=3)

2 4 6 8 10

-4

-2

0

2

4

6



Validation Checks: Source

✓ Coupling formula for δ2R agrees with direct integration for any two input 
modes with generic time dependence

✓ Summing up modes of coupling formula to get 4D δ2R agrees with first 
summing up modes of h1 and then directly computing 4D δ2R, using 
numerical data for 

✓ Near-particle calculation of δ2R agrees with result of coupling formula

✓ Coupling formula for δ2R satisfies Bianchi identity 

✓ Numerical coupling results for δ2R have correct falloff at large r 

✓ Numerical coupling results for δ2R agree with near-horizon expansion 

h̄1
ret



Validation Checks: Punctures at 
Worldline

Wave equation
✓ hSS cancels 2δ2R[hS,hS] to correct order (∼ ∆r2 ln∆r difference, from term ∼ ρ2 ln ρ in hSS)
✓ hSR cancels 2δ2R[hS,hR] to correct order (C0 with first two terms in hSR)
✓ hδm contains the correct δ function
✓ hδz contains the correct δʹ function
✓ hδz contains the correct δ function
✓ Ignoring distributions, hδm is smooth to correct order (C0 with first two terms in hδm)
✓ Ignoring distributions, hδz is smooth to correct order (C0 with first three terms in hδz)

Gauge condition
✓ hSS satisfies gauge condition to correct order (∼ ∆r ln ∆r difference, from term ∼ ρ2 ln ρ in) 
✓ hSR + hδm + hδz satisfies gauge condition to correct order (C1 if punctures valid through 𝝐0) 



Validation Checks:  Numerics and 
boundary conditions 

✓ Correct dependence on parameter 𝜅.
✓ Worldtube and window function computations agree with 

analytical i = 2 result.
✓ ◻h∞ and ◻hH cancel δ2R to correct order in f(r) and 1/r.
✓ Agreement between worldtube and window function 

computations.
✓ Agreement between results using different combinations of  

i = 1, 3, 6 equations.
✓ Residual field is regular at the horizon (i.e., i = 1 and i = 2 

agree through order f(r)).



Eff. source

Towards second order self-force

Eff. source
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Eff. source

Towards second order self-force
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Second order conservative effects
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Eff. source

Towards second order self-force
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Eff. source

Towards second order self-force
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Second Order Bondi Mass

(r0/M)-1 reference line
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Second Order Irreducible Mass
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Second Order Binding Energy

MBind = MBondi − Mirr + [(1 − 2M
r0

)(1 − 3M
r0

)
−1/2

− 1]

Second order binding energy can be written as a sum of 
contributions from the irreducible mass, Bondi mass, and relation 

between energy and specific energy.

Energy vs Specific Energy



Second Order Binding Energy
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Validation Checks:  Irreducible mass and 
formalism 

✓ Mirr formula works for expansion of Vaidya around 
Schwarzschild.

✓ Mirr formula works for expansion of Kerr around 
Schwarzschild.

๏ Mirr formula works for expansion of moving Vaidya.
๏ Mirr is invariant under suitable class of first order gauge 

transformations.
✓ Mirr is invariant under suitable class of second order gauge 

transformations.
✓ i = 2 solution recovers balance law.



Why don’t we agree with First Law?

✤ We now have a finite answer that we trust, but it 
doesn’t agree with the prediction from the first law.

✤ Two possibilities:
๏ Mirr is not invariant under suitable class of first order 

gauge transformations?
๏ Puncture at horizon has not been derived from a 

fundamental principle. Constructed to cancel 
divergence and nothing more. A more careful 
prescription may be needed (see talk by Kei Yamada).



Outstanding issues and questions

✤ Higher modes not a problem. Tools are all set up for all modes, have some parts but we have yet to finish the 
calculation

✤ Horizon punctures  
Is there a physically motivated choice?

✤ Are there other things we could compute in our current setup?  
So far, we know how to compute binding energy, ∆U and dissipative self-force. Any other useful quantities?

✤ Is there a PN or NR prediction for Delta U as we define it, or can we adjust what we're doing so that we use 
the same definitions?  
We can directly use the prediction through 3PN from older papers, but at higher orders we run into 
ambiguity in the definition of conservative dynamics. (We have tried using Damour's definition without 
success.)

✤ Dissipative effects appear even in seemingly "conservative" quantities like the instantaneous binding energy.

✤ Can this be made to work in other gauges or with other variables (Teukolsky, RWZ)?

✤ How should long-term evolution be tackled?


