Near-horizon Expansion of Second-order BH Perturbations

Kei Yamada (山田 慧生) Kyoto U.

with A. Pound & T. Tanaka

20th Capra meeting @UNC, Chapel Hill

Summary of today's talk

The vacuum field equations to the second order are

$$\delta G^{\mu}_{\ \nu}[\varepsilon h^{(1)} + \varepsilon^2 h^{(2)}] = -\delta^2 G^{\mu}_{\ \nu}[\varepsilon h^{(1)}, \varepsilon h^{(1)}],$$

where $\delta G_{\mu\nu}[h]$ & $\delta^2 G_{\mu\nu}[h, h]$ are linear & quadratic in h.

- Solutions in FD should diverge near the horizon of BH.
- ullet Once we identify the secularly growing piece $h^{(1){
 m sec}}$, solutions to the following equations do NOT diverge:

$$\delta G^{\mu}_{\ \nu}[\varepsilon \tilde{h}^{(1)} + \varepsilon^2 h^{(2)}] = -\delta^2 G^{\mu}_{\ \nu}[\varepsilon h^{(1)}] - \delta G^{\mu}_{\ \nu}[\varepsilon h^{(1)\mathrm{sec}}].$$

- Introduction
- Near-horizon expansion
- Static/secularly growing pieces
- Summary

- Introduction
- Near-horizon expansion
- Static/secularly growing pieces
- Summary

Extreme Mass Ratio Inspirals

• Expand equations in the mass ratio:

$$\varepsilon \equiv \mu/M \ll 1$$
,

- Consider the two timescale expansion.
 - Orbital "fast time": v
 - ullet Inspiral "slow time": \tilde{v}

IR divergence around boundaries

We expand equations in the mass ratio:

$$g_{\mu\nu} = g_{\mu\nu}^{\text{BG}} + \varepsilon h_{\mu\nu}^{(1)} + \varepsilon^2 h_{\mu\nu}^{(2)} + \cdots$$

The field equations to the second-order are

$$\delta G^{\mu}_{\ \nu}[\varepsilon h^{(1)} + \varepsilon^2 h^{(2)}] = -\delta^2 G^{\mu}_{\ \nu}[\varepsilon h^{(1)}, \varepsilon h^{(1)}],$$

where $\delta G^{\mu}_{\ \nu}[h]$ & $\delta^2 G^{\mu}_{\ \nu}[h, h]$ are linear & quadratic in h.

IR divergence around boundaries

• The field equations to the second-order are

$$\delta G^{\mu}_{\ \nu}[\varepsilon h^{(1)} + \varepsilon^2 h^{(2)}] = -\delta^2 G^{\mu}_{\ \nu}[\varepsilon h^{(1)}, \varepsilon h^{(1)}].$$

• Schematically, the following integral diverges around boundaries.

$$h_{\omega\ell m}^{(2)} = \int_{r_{\rm h}}^{\infty} G_{\omega\ell m}(r, r') \delta^2 G(r') dr',$$

- ✓ @infinity use the PN/PM results (cf. [Pound 2015]).
- We discuss the near-horizon expansion.

Decomposition of $h^{(i)}$

- The origins of secular growth are the "stationary" parts of $-\delta^2 G^{\mu}_{\ \nu}$.
 - Almost all of the "stationary" parts should be balanced with "stationary" solutions $h^{(i)\text{sta}}$.
- Let us decompose $h^{(i)}$ as

$$h_{\mu\nu}^{(i)} = h_{\mu\nu}^{(i)} v^{-\text{dep}}(\tilde{v}, v, r, \theta, \phi) + h_{\mu\nu}^{(i)} \text{sta}(\tilde{v}, r, \theta).$$
Oscillatory piece
"Stationary" piece

• Focus on the "stationary" piece, because $h_{\mu\nu}^{(i)v-{\rm dep}}$ does not cause the divergence.

- Introduction
- Near-horizon expansion
- Static/secularly growing pieces
- Summary

The Eddington-Finkelstein coordinates

The Schwarzschild background metric is

$$ds^{2} = -f dv^{2} + 2 dv dr + r^{2} d\theta^{2} + r^{2} \sin^{2} \theta d\phi^{2}$$

in the ingoing Eddington-Finkelstein coordinates, where f = 1 - 2M/r.

- ✓ Regularity of metric perturbations on the horizon.
- **✓** On the horizon $g^{rr} = 0$:
 - d^2/dr^2 does not appear in the Lorenz gauge.

Near-horizon expansion

• The metric perturbations are

$$g_{\mu\nu} = g_{\mu\nu}^{BG} + \varepsilon h_{\mu\nu}^{(1)} + \varepsilon^2 h_{\mu\nu}^{(2)} + \cdots$$

• Expand the perturbations near the horizon

$$h_{\mu\nu}^{(i)\text{sta}}(\tilde{v}, r, \theta) = h_{0\mu\nu}^{(i)\text{sta}}(\tilde{v}, \theta) + f h_{1\mu\nu}^{(i)\text{sta}}(\tilde{v}, \theta) + O(f^2),$$

where $\tilde{v} \equiv \varepsilon v$ is a slow-time variable.

 \checkmark O(f^2) in $h_{\mu\nu}^{(i){\rm sta}}(\tilde{v},r,\theta)$ is not necessary because of the absence of d^2/dr^2 .

The Lorenz gauge conditions

• The Lorenz gauge conditions $\bar{h}_{\mu\nu}^{(i);\nu}=0$ are formally

$$h_{1vv}^{(i)} = F_v^{(i)}[h_0], \ h_{1I}^{(i)I} = F_r^{(i)}[h_0],$$

$$h_{1v\theta}^{(i)} = F_{\theta}^{(i)}[h_0], \ h_{1v\phi}^{(i)} = F_{\phi}^{(i)}[h_0],$$

in the near-horizon limit $f \to 0$, where $I = \theta, \phi$.

✓ Under the Lorenz gauge conditions, we can eliminate $h_1^{(i)}$ for 4 components of $\delta G^{\mu}_{\ \nu}$.

First order in ε

• At the first order in ε ,

4 components of $\delta G^{\mu}_{\ \nu}$ NOT containing $h_1^{(1)}$ are

$$\sin \theta \delta G^{(1)\text{sta}\,r}_{v} = -\partial_{\theta} \left[\frac{\sin \theta}{8M^{2}} \left(h_{0v\theta}^{(1)\text{sta}} + \partial_{\theta} h_{0vv}^{(1)\text{sta}} \right) \right],$$

•

Although these do not vanish in general,

$$\int \sin\theta \, \delta G^{(1)\operatorname{sta} r}_{v} \, d\theta \, d\phi = \int \sin\theta \, \delta G^{(1)\operatorname{sta} r}_{\phi} \, d\theta \, d\phi = 0.$$

Non-trivial solutions for the zero modes.

First order in ε

$$\int \sin \theta \, \delta G^{(1)\operatorname{sta} r}_{v} \, d\theta \, d\phi = \int \sin \theta \, \delta G^{(1)\operatorname{sta} r}_{\phi} \, d\theta \, d\phi = 0.$$

- The first-order field equations do NOT determine the zero modes of $h^{(1)\text{sta}}$.
- The second order does, because $\partial_{\tilde{v}} h^{(1)\text{sta}}$ appears in the second order.
 - The solutions are secularly growing.

Energy & angular momentum fluxes

• Ingoing GW's \dot{E} & \dot{L} across the horizon are

$$\dot{E} \equiv \frac{1}{8\pi} \int \sqrt{-g} \left(-\delta^2 G^r_{\ v} \right) d\theta \, d\phi,$$

$$\dot{L} \equiv \frac{1}{8\pi} \int \sqrt{-g} \left(-\delta^2 G^r_{\ \phi} \right) d\theta \, d\phi,$$

where $\equiv \partial/\partial \tilde{v}$.

• These components of the second-order source terms for zero modes of $h^{(1)\text{sta}}$ correspond to \dot{E} & \dot{L} of first-order ingoing GWs.

- Introduction
- Near-horizon expansion
- Static/secularly growing pieces
- Summary

Second-order Einstein tensor

• At the second order in ε , 4 components of $\delta G^{\mu}_{\ \nu}$ NOT containing $h_1^{(2)}$ are

$$\sin\theta \, \delta G^{(2)\text{sta}\,r}_{v} = \frac{\sin\theta}{8M} \frac{\partial_{\tilde{v}}}{\partial_{\tilde{v}}} \left(4h_{0vv}^{(1)\text{sta}} + h_{0\theta\theta}^{(1)\text{sta}} + h_{0\phi\phi}^{(1)\text{sta}} \right)$$

$$- \partial_{\theta} \left[\frac{\sin\theta}{8M^{2}} \left(h_{0v\theta}^{(2)\text{sta}} + \partial_{\theta} h_{0vv}^{(2)\text{sta}} - 4M\partial_{\tilde{v}} h_{0v\theta}^{(1)\text{sta}} \right) \right],$$

$$\sin\theta \, \delta G^{(2)\text{sta}\,r}_{\phi} = \frac{\sin^{2}\theta}{2} \frac{\partial_{\tilde{v}}}{\partial_{\tilde{v}}} \left(4h_{0v\phi}^{(1)\text{sta}} + h_{0r\phi}^{(1)\text{sta}} \right)$$

$$+ \partial_{\theta} \left[-\frac{\sin^{3}\theta}{4M} \partial_{\theta} \left(\frac{1}{\sin\theta} h_{0v\phi}^{(2)\text{sta}} \right) + \sin^{2}\theta \, \partial_{\tilde{v}} h_{0\theta\phi}^{(1)\text{sta}} \right],$$

:

Abbott & Deser's quantities

• We find

$$\frac{1}{8\pi} \int \sqrt{-g} \sin \theta \, \delta G^{(2) \sin r} \, d\theta \, d\phi \Big|_{r=r_{\rm h}} = -\partial_{\tilde{v}} \left(M^{\rm AD} \right) \Big|_{r=r_{\rm h}},$$

$$\frac{1}{8\pi} \int \sqrt{-g} \sin \theta \, \delta G^{(2) \sin r} \, d\theta \, d\phi \Big|_{r=r_{\rm h}} = -\partial_{\tilde{v}} \left(L^{\rm AD} \right) \Big|_{r=r_{\rm h}},$$

where

$$M^{\rm AD} = \frac{1}{2} \int F^{(v)\alpha\beta} d\Sigma_{\alpha\beta}, \quad L^{\rm AD} = \frac{1}{2} \int F^{(\phi)\alpha\beta} d\Sigma_{\alpha\beta},$$
$$F^{(v/\phi)}_{\mu\nu} \equiv -\frac{1}{8\pi} \left[\xi^{(v/\phi)\alpha} \bar{h}^{(1)\rm sta}_{\alpha[\mu;\nu]} + \xi^{(v/\phi)\alpha}_{;[\mu} \bar{h}^{(1)\rm sta}_{\nu]\alpha} + \xi^{(v/\phi)}_{\mu} \bar{h}^{(1)\rm sta}_{\nu]\alpha} \right].$$

Physical secular growth

• $\{rv\}$ & $\{r\phi\}$ components of

$$\int \sqrt{-g} \, \delta G^{\mu}_{\ \nu} \, d\theta \, d\phi = \int \sqrt{-g} \left(-\delta^2 G^{\mu}_{\ \nu} \right) \, d\theta \, d\phi,$$

determine the secular growth of zero modes.

- The secular growth
 - the secular change of the BH's mass/spin $\delta M = \dot{M}\tilde{v} \& \delta a = \dot{a}\tilde{v}.$

Identification of the secular pieces

• Calculating deviations due to δM , δa , we obtain

$$\delta G_{\mu\nu}[h^{(1)\mathrm{sec}}] = \begin{pmatrix} \frac{2}{r^2} \partial_{\tilde{v}} \, \delta M(\tilde{v}) & 0 & 0 & -\frac{(M+r)\sin^2\theta}{r^2} \partial_{\tilde{v}} \, \delta a(\tilde{v}) \\ 0 & 0 & 0 & \frac{\sin^2\theta}{r} \partial_{\tilde{v}} \, \delta a(\tilde{v}) \\ -\frac{(M+r)\sin^2\theta}{r^2} \partial_{\tilde{v}} \, \delta a(\tilde{v}) & \frac{\sin^2\theta}{r} \partial_{\tilde{v}} \, \delta a(\tilde{v}) & 0 & 0 \end{pmatrix},$$

which reproduces the zero modes.

Therefore, the effective source term,

$$-\delta^2 G^{\mu}_{\ \nu}[\varepsilon h^{(1)}, \varepsilon h^{(1)}] - \delta G^{\mu}_{\ \nu}[\varepsilon h^{(1)\text{sec}}],$$

can be integrated without any divergences.

- Introduction
- Near-horizon expansion
- Static/secularly growing pieces
- Summary

Summary

- Need the second-order metric perturbations for EMRI observations by LISA.
 - IR divergences appear around boundaries.
- By the near-horizon expansion, we found
 - ullet the 2nd-order eqs. determine the zero modes of $h^{(1){
 m sta}}$.
 - the secular growth $\Rightarrow \partial_{\tilde{v}} M^{\rm AD} \& \partial_{\tilde{v}} L^{\rm AD}$ due to $\dot{E} \& \dot{L}$.
- Extension to the Kerr case is straightforward.
- How to tame secular growth of pure gauge modes...?

THANK YOU FOR YOUR ATTENTION