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• The vacuum field equations to the second order are  
 
 
where                &                      are linear & quadratic in    .

• Solutions in FD should diverge near the horizon of BH.

• Once we identify the secularly growing piece              ,  
solutions to the following equations do NOT diverge:  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Extreme Mass Ratio Inspirals

• Expand equations  
in the mass ratio:  

• Consider the two time-
scale expansion.

• Orbital “fast time”:  

• Inspiral “slow time”: 
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v
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• We expand equations in the mass ratio:  

• The field equations to the second-order are  
 
 
where               &                    are  
linear & quadratic in    .
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•  

• Schematically, the following integral diverges 
around boundaries. 

✓ @infinity           use the PN/PM results (cf. [Pound 2015]).

• We discuss the near-horizon expansion.
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• The origins of secular growth are  
the “stationary” parts of               .

• Almost all of the “stationary” parts should be 
balanced with “stationary” solutions            .

• Let us decompose        as  
 

• Focus on the “stationary” piece,  
because                  does not cause the divergence.
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The Eddington-Finkelstein coordinates

• The Schwarzschild background metric is  
 
 
in the ingoing Eddington-Finkelstein coordinates,  
where                        .

✓Regularity of metric perturbations on the horizon.

✓On the horizon             :  
                      does not appear in the Lorenz gauge.
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Near-horizon expansion

• The metric perturbations are  

• Expand the perturbations near the horizon  
 
where             is a slow-time variable.

✓          in                      is not necessary  
because of the absence of            .
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The Lorenz gauge conditions

• The Lorenz gauge conditions                   are formally  
 
 
 
 
in the near-horizon limit           , where               .

✓Under the Lorenz gauge conditions,  
we can eliminate        for 4 components of          .
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First order in 

• At the first order in   ,  
4 components of          NOT containing        are  
 

• Although these do not vanish in general, 

• Non-trivial solutions for the zero modes.
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First order in 

• The first-order field equations do NOT determine  
the zero modes of           .

• The second order does,  
because                appears in the second order.

• The solutions are secularly growing.
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Energy & angular momentum fluxes

• Ingoing GW’s     &     across the horizon are  
 
 
 
where               . 

• These components of the second-order source 
terms for zero modes of             correspond to  
    &     of first-order ingoing GWs.
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Second-order Einstein tensor

• At the second order in   ,  
4 components of          NOT containing        are  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@ṽ

⇣
4h(1)sta

0vv + h(1)sta
0✓✓ + h(1)sta

0��

⌘

� @✓


sin ✓

8M2

⇣
h(2)sta
0v✓ + @✓h

(2)sta
0vv � 4M@ṽh
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Abbott & Deser’s quantities

• We find 
 
 
 
 
where  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Physical secular growth

•          &          components of  
 
 
determine the secular 
growth of zero modes.

• The secular growth  
=> the secular change of 
the BH’s mass/spin  
                      &                 .
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Identification of the secular pieces

• Calculating deviations due to      ,     , we obtain  
 
 
 
 
which reproduces the zero modes.

• Therefore, the effective source term,  
 
can be integrated without any divergences.
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@ṽ �a(ṽ)
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Summary

• Need the second-order metric perturbations  
for EMRI observations by LISA.

• IR divergences appear around boundaries.

• By the near-horizon expansion, we found 

• the 2nd-order eqs. determine the zero modes of               .

• the secular growth =>                 &               due to      &    .

• Extension to the Kerr case is straightforward.

• How to tame secular growth of pure gauge modes…?
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