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Summary of today’s talk

e The vacuum field equations to the second order are

SG* [eh(M) + 2hD] = —52GH [eh™D), en ()],
where 6G,,, [h] & §°G,, [h, h] are linear & quadratic in A.
e Solutions in FD should diverge near the horizon of BH.

e Once we identify the secularly growing piece h{1)5°¢,
solutions to the following equations do NOT diverge:

5G* [ehM) + 2D = —52GH [eh(V] — 6G* [eh(P)5e].
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Extreme Mass Ratio Inspirals

e Expand equations
in the mass ratio:

e=u/M <1,

e Consider the two time-
scale expansion.

e Orbital “fast time”: v

e Inspiral “slow time”: v



IR divergence around boundaries

e We expand equations in the mass ratio:

Guv = QEE + ehgly) I szhf,,) e
e The field equations to the second-order are
SG* [ehV) 4 2] = —62GH [ehD) enV)],

where 6G* [h] & §2°GH [h, h] are
linear & quadraticin h.



IR divergence around boundaries

e The field equations to the second-order are
SG* [eh(V) + 2hD] = —52GH [eh D), en(D)].

e Schematically, the following integral diverges
around boundaries.

h(2) :/ ngm(T,T,)52G(T/)dT,,

wlm

v @infinity » use the PN /PM results (cf. [Pound 2015]).

e We discuss the near-horizon expansion.



Decomposition of h"

e The origins of secular growth are
the “stationary” parts of —§*G*,.

e Almost all of the “stationary” parts should be
balanced with “stationary” solutions h("5%,

e Let us decompose h'") as
1) __[1,(2)v—dep ) sta [~
hi) =(hpu P (8, 0,7, 0, ¢)) +{hy2)**" (@, 7, 0)
Oscillatory piece| |“Stationary” piece

e Focus on the “stationary” piece,
because hfjﬁ”_depdoes not cause the divergence.
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The Eddington-Finkelstein coordinates

e The Schwarzschild background metric is
ds? = — fdv* + 2dvdr + r2df* + r* sin® 6dp?

in the ingoing Eddington-Finkelstein coordinates,
where f =1-2M/r .

v Regularity of metric perturbations on the horizon.

v On the horizon ¢"" = 0:
* d*/dr* does not appear in the Lorenz gauge.



Near-horizon expansion

e The metric perturbations are

Juv =

BG
9uv

e Expand the perturbations near the horizon

h(’)Sta(v ) =

1)sta
= o

5h£bly) 52h£b2,/)
(3,0) + i

(©,0)

where o = v is a slow-time variable.

v O(f?)in h{})***(%,r,0) is not necessary

because of the absence of d*/dr-.

O(f%).



The Lorenz gauge conditions

e The Lorenz gauge conditions ij,}?” = ( are formally

lov — F?EZ) [h0]7 hgzl)l = F?“(Z) [h()],
Rl = Fy”lhol, h{Dy = Fy[ho),

(Y

P (0

in the near-horizon limit f — 0, where I =0, ¢.

v Under the Lorenz gauge conditions,

we can eliminate hgi) for 4 components of 6G*,.



First order in ¢

e At the first order in ¢,

4 components of §G*, NOT containing h{') are

sin oG L)star

(Y

sin @ 1R e
= —89 Sw (h(()i)et -I—ﬁgh&)vt ) ]

e Although these do not vanish in general,
/ sin @ 6GWs2T g0 dep = / sin§ 6G**"  d dg = 0.

e Non-trivial solutions for the zero modes.



First order in ¢

/ sin @ 6GSAT 40 dgp = / sin 6G"** do dg = 0.

e The first-order field equations do NOT determine
the zero modes of h!)s*

e The second order does,
because ;A V5" appears in the second order.

e The solutions are secularly growing.



Energy & angular momentum fluxes

e Ingoing GW’s E & L across the horizon are
E = 8%/@(—52(;@) dé do,
| ]
e 87/@(—52(; ) d6do
where "= 9/00.
e These components of the second-order source

terms for zero modes of h5** correspond to
E & L of first-order ingoing GWs.
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Second-order Einstein tensor

e At the second order in ¢,
4 components of §G*, NOT containing »'* are

] 9 Sta sta sta
sin§ 5GP, =E 05 (ARG, + higy™ + higs” )

(1 — SM Ovv Opp
in ¢ sta sta sta
0[S0 (2 + k2 — aMaohiy ) |
0
: (2)star Sl 0 - (1)sta (1)sta

=2
sin” 6 1 — , e
00 |~ 00 (i) + sin 00shG"

)



Abbott & Deser’s quantities

e We find
1
87/ V=gsing oG ¥ dgdg| = —0y (MAP)] _
"=—Th
1 . (2)star AD
= [ V=gsingGP"T dode| = 05 (L*P)] ..
"=—Tnh
where
MAD — E/F(v)aﬁ DI AP — E/F(qﬁ)aﬁ I
9 P 9 O
1 =3 % 5
(v/¢) = _ = |g(v/¢)ap(l)sta (v/p)a 7 (1)sta (v/¢) 7 (1)stasa
F,LLI/ e [5 ha[,u;z/] g B[Mhz/]oz g,u hl/]a ’




Physical secular growth

e {rv} & {r¢} components of
/\/——g5G“V df do = /\/—_g(—(SZG“V) df do,

determine the secular
growth of zero modes.

e The secular growth
=) the secular change of
the BH’s mass/spin
oM = Mv &da = av.




[dentification of the secular pieces

e Calculating deviations due to §M, da, we obtain

2 _ (M + 7)sin® 2
( r—23@ oM () 0 0 — p; O3 5a(’u)\
. 9 0
5G o [H(V5°°] = 0 0 0 S”; 85 a(?)
0 0 0 0
(M + r)sin® 6 _ sin” @ ”
\— p: Oy 6a(?) x Oy 6a(?) 0 0 )

which reproduces the zero modes.

e Therefore, the effective source term,
— e [5h(1), 5h(1)] — 0G*, [5h(1)sec],
can be integrated without any divergences.
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summary

e Need the second-order metric perturbations
for EMRI observations by LISA.

e IR divergences appear around boundaries.
e By the near-horizon expansion, we found

e the 2nd-order eqgs. determine the zero modes of pilista

e the secular growth s Oz M AD & 0:L*Pdueto E & L.
e Extension to the Kerr case is straightforward.

e How to tame secular growth of pure gauge modes...?
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