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• Planetary triple systems: Kozai-Lidov mechanism.

• Resonant triple system with stellar BHs and NSs: the formation of highly
eccentric mergers.

• Stellar mass binaries near a SMBH.

• EMRI with a SMBH perturber.

• Many more…
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Antonini et	al.	2012;	Vanlandingham et	al.	2016
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• Formalism: particle moving in a tidally perturbed Schwarzschild spacetime

• Interesting relativistic effects:

• Precession due to coupling between tidal field and quadrupole moment of
the orbit.

• Relativistic Kozai-Lidov effect for transient resonances.

• Shift on ISCO.

• Future directions.
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• The external tidal field can be decomposed into multipoles:

• In the quasi-stationary limit, neglect the contribution from magnetic part 
of the tidal field. A Schwarzschild black hole metric is perturbed as

• A perturbed Kerr metric is solved by Yunes et al in 2006.

Poisson	2005

Electric part: Magnetic part:
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• Keep only the quadrupole piece of tidal field

• The corresponding tidal tensor is

• The perturbed metric can be obtained analytically.

Poisson	2010

Tidal potential:
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• First viewpoint: accelerated particle in Schwarzschild spacetime

• Second viewpoint: particle moving on geodesic of perturbed spacetime

With Hamiltonian given by:
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• Change rate of conserved quantities in Schwarzschild spacetime

• Conserved quantities: energy, vector angular momentum

• Geodesic motion in Schwarzschild is planar. Radial and angular motions 
are independent (separable), indexed by Mino time.
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• Conserved quantities: energy, vector angular momentum

• Geodesic motion in Schwarzschild is planar. Radial and angular motions 
are independent (separable). 
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• Stationarity: must be conserved

• Axis symmetry: must be conserved

• The difference between and are ,
interchangeable for long-term secular evolution.

• Time reversal symmetry + 2 D ergodic orbit
implies that the magnitude of total angular momentum
must be conserved.

Precession around 
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• The precession frequency is given by, (align with ):

With average lapse rate:
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• The precession frequency is given by, (align with ):

• The orbit-averaged interaction energy depends on the inclination angle:

• Torque is

• Orthogonal piece of angular momentum
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• The precession frequency can be expressed by:
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• The precession frequency can be expressed by:

• A reasonably accurate fit:

• Precession for stellar mass (10 Msun) black hole binary near a SMBH
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Average over 
outer orbit
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• The argument about conservation of |L| is invalid for closed orbit.

• Such orbits correspond to transient resonances:

• Instead of averaging over the 2-D ring, now average over 1-D trajectory.
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• Pick a 1:2 resonance, with

• Conservation of energy and angular momentum around symmetry axis

• The change rate of total angular momentum may be nonzero!
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• Pick a 1:2 resonance, with

• Conservation of energy and angular momentum around symmetry axis

• The change rate of total angular momentum may be nonzero!

• A whole new set of Kozai-type configurations around the relativistic transient
resonance points. Newtonian limit = 1:1 resonance!

• An unique signature for tidally-perturbed Kerr/Schwarzschild metric: test gravity.
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• The scaling of dissipative part of self force and the tidal force:

• Phase correction due to self force contribution during resonance cycles

• Phase correction due to tidal force during resonance cycles

• Phase resolution of LISA:

• The tidal effect is visible if
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• Tens of percent of Milky-way alike galaxies experience a MBH merger within the
past 10 Gyrs.

• Time spent for distance less than sub-parsec is uncertain: final parsec problem.

Bell	et	al.	2006

Begelman,	Rees,	and	Blandford	1980
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• Tens of percent of Milky-way alike galaxies experience a MBH merger within the
past 10 Gyrs.

• Time spent for distance less than sub-parsec is uncertain: final parsec problem.

• Take the merger time of MBH binary to be several Gyrs [Kelley et al. 2017], the
time spent from sub-parsec scale might be several 10^8 yrs.

• The optimal EMRI rate > 10^3 yr^-1; the average rate >10^2 yr^-1

• The optimal rate of detection for tidal effect ~ a few yr^-1; more possible rate ~ 1
per several years.

Bell	et	al.	2006

Gair et	al.	2017
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• A topic of mainly theoretical interest.

• Detweiler-type of gauge-invariant quantities relies on the assumption of helical
symmetry.

• An angular averaged version of helical symmetry:

• Gauge invariance of angular-averaged frequency:
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• Up to linear order in strength of tidal field, it suffices to consider mean-motion of
ISCO.

• Hamiltonian of the mean motion:

• ISCO condition:

• ISCO shift:
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• Extend the study to Kerr.

• Joint evolution with radiation reaction.

• An EOB-type construction for cases with comparable mass-ratio inner 
binary.

• Stellar-mass triple systems in the PN regime, a self-consistent description 
of orbit including PN correction, tidal force, self force: Multiscale analysis 
/ RG method.


