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Instability of extremal horizons

• No exponentially growing 
modes (Whiting 1989) 

• Aretakis (2010): r derivs of 
scalars decay outside, not 
on horizon 

• Two derivs grow unbounded 
• Generalized: all extremal 

BHs, kinds of fields, 
beyond axisym 

• What happens in near-
extremal systems?
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Aretakis (2010, 2012),  
Lucietti and Reall (2012), 
Casals et al. (2016)



Black hole perturbation theory
• Wave prop around BHs 
• Perts to spacetime 
• Orbits of test bodies 
• Test for stability: modal, linear
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• Analytically appx QNM 
freq, decay

Slow decay!

Modes of nearly extremal BHs

• Match near horizon to far 
region:         

⌦H

S = Ma

Rlm!

• Rapid rotation: new 
expansion param

!R ⇡ m⌦H �n ⇡ ✏(n+ 1/2)

Teukolsky and Press (1974), Detweiler (1980), Hod (2008),  
Yang et al. (2012, 2013a, 2013b)
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Wavefunctions of nearly 
extremal BHs
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Wavefunctions of nearly 
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Wavefunctions of nearly 
extremal BHs
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Quasinormal mode response

• Have source-free solutions
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• Build response func in time domain
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Quasinormal mode response
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• Inverse Laplace transform
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Quasinormal mode response
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• Inverse Laplace transform
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Quasinormal mode response
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• Inverse Laplace transform
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Near-horizon response of near-
extremal holes
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Near-horizon response of near-
extremal holes
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Near-horizon response of near-
extremal holes
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Near-horizon response of near-
extremal holes
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Near-horizon response

9

• Collective response: transient QNM growth 
• For grav and EM perts, early growth to large amplitudes 
!

• Scalar fields only decay, but r derivs grow transiently
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Instability through modes
• Smooth transition to horizon instability 
• As         , modes collect into a branch point
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• Casals, Gralla, P. Zimmerman (2016): Branch point gives 
power law response 

• Radial der: unbounded growth for scalars (m = l)



Physical picture: Near horizon 
extremal Kerr

• Extremal black holes hide a lot at the horizon 
• Make a coord transform
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ds

2 = �x̄(x̄+ 2)dv̄2 + 2dv̄dx̄+ 4(d�̄+ (x̄+ 1)dv̄)2

x̄ =
x

4✏
v̄ =

2✏v

M
�̄ = �̃� ⌦Hv ✏ ! 0

• Result: NHEK spacetime, not asymp flat 
• More symmetries, Kerr/CFT duality

Bardeen, Press, Teukolsky (1972);Bardeen, Horowitz (1999); Guica et al. (2009); many others…



Physical picture: Nearly 
extremal Kerr

• Imprint of NHEK remains 
when  

• Near horizon region has 
natural coords  

• Transform               large 
• Finite perts in      have 

steep gradients in  
• GF: regions are connected
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Possible consequences

• Infalling probes 
generically see large 
fields: BHs as particle 
accelerators 

• EM fields grow near BH, 
drive unique dynamics? 

• Grav perts enhanced, 
stronger backreaction? 

• Enhance grav turbulence?
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Prelim
inary!

Near response to near perts
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Prelim
inary!

Near response to near perts
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inary!

Near response to near perts
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• Response is regular in near-horizon coordinates 
• Growth rates initially to the power 2s 
• Again scalars decay but EM, grav fields grow 
• s < 0 and axisymmetric cases still TBD

Near response to near perts
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Summary

• Perts of nearly extremal BHs experience 
transient growth near horizon 

• QNM perspective: consequence of collective 
oscillation of many modes 

• Physical picture: result of (almost) singular 
map between near-horizon region and 
asymptotic observers 

• Outlook: many potential consequences to 
explore  

• Near-near case under active investigation
16



EXTRAS
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Scalar response: Far observer

18
Glampedakis, Andersson (2001) 
Yang, AZ et al (2013)
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Scalar response: Far observer
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Scalar response: Far observer

18
Glampedakis, Andersson (2001) 
Yang, AZ et al (2013)

/ ✏

⇠ e�im⌦HT e�✏T/2
X

n

✏ (�1)ne�n✏T

n!�[2i� � n]

GQNM ⇠
X

n

e�i!n(t�r⇤�r0⇤)

dW/d!|!n

✏



Scalar response: Far observer

18
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• Sum gives a surprise
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Scalar response: Far observer
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Glampedakis, Andersson (2001) 
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• Sum gives a surprise
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Power law ringdown

• This collective 
excitation provides 
a unique ringdown 

• Initially a power-law 
decay 

• Slowest mode takes 
over at end
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Power law ringdown

20Yang, AZ et al (2013)
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Power law ringdown
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Strange chirps, power law from 
plunge

• Related effects seen 
in the inspiral and 
plunge of test 
particles 

• Farway observers: 
particle locks onto 
the horizon, 
redshifts away

21

Inspiral into Gargantua
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We model the inspiral of a compact object into a more massive black hole rotating very near the
theoretical maximum. We find that once the body enters the near-horizon regime the gravitational
radiation is characterized by a constant frequency, equal to (twice) the horizon frequency, with an
exponentially damped profile. This contrasts with the usual “chirping” behavior and, if detected,
would constitute a “smoking gun” for a near-extremal black hole in nature.

I. INTRODUCTION

General relativity imposes a hard upper limit on how
fast a black hole can rotate. For a black hole of mass M ,
the angular momentum J must satisfy

J  GM2/c, (1)

where G is Newton’s constant and c is the speed of light
(both hereafter set to unity). Above this value, the event
horizon disappears and the spacetime contains a naked
singularity. It is impossible to spin up a black hole above
this limit with any continuous process featuring reason-
able matter [1], and there is much evidence in favor of the
“cosmic censorship conjecture” [2] that no generic initial
data can produce a naked singularity.

Black holes that saturate the bound (1) are known as
extremal. More generally, extremal black holes are de-
fined as those with zero Hawking temperature. Extremal
black holes play a key role in many theoretical arguments
investigating the nature of classical and quantum gravity,
such as cosmic censorship [3] and the quantum nature of
black hole entropy [4]. They have near-horizon regions
that possess additional emergent symmetries [5] and may
be governed by a holographic duality [6] in the spirit of
AdS/CFT [7]. At least in parameter space, they are a
hair’s breath from being naked singularities, the existence
of which would (in principle) allow experimental study of
quantum gravity from a distance. In light of their basic
role in theoretical work, it would be fascinating to dis-
cover an extremal black hole in nature.

In this paper we demonstrate a potential means of dis-
covery via a “smoking gun”: a signal which, if observed,
would conclusively establish the presence of a black hole
spinning at or extremely near the fundamental limit. We
consider the gravitational radiation from the inspiral of a
body into a more massive black hole. In the non-extremal
case, the wave amplitude and frequency increase slowly
in time until cutting o↵ rapidly when the compact ob-
ject reaches the innermost stable circular orbit (ISCO)
and plunges into the black hole. If the black hole is
rapidly spinning, however, there is a new, near-horizon

h+�(D/�)

5PGW�(M/�)2
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t�(�/M2)

Near-horizon
regime

Near-extremal

FIG. 1. Gravitational waveforms from equatorial, quasi-
circular inspiral into ordinary and near-extremal black holes.
The black hole spins are a/M = 0.97 and a/M = 1 � 10�9,
respectively. We show the h+ component for a system viewed
face-on. The waveform begins when the particle crosses
r = 3.3M and ends when the particle reaches the ISCO; we do
not model the plunge or ringdown phase of the inspiral in this
work. The individual sinusoidal oscillations of the waveform
are too small to see on this scale (where we have assumed
a small mass-ratio). We also show (five times) the radiated
power, PGW. The masses of the primary and secondary are
denoted by M and µ, respectively, the distance to the binary
is D.

phase of the inspiral where the amplitude begins to de-

crease in time and the frequency saturates at the hori-
zon frequency – see Fig. 1. This can be understood from
the fact that the ISCO of a rapidly spinning black hole
is close to the horizon and allows access to the near-
horizon regime, where the gravitational-wave emission is
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Strange chirps, power law from 
plunge

• Related effects seen 
in the inspiral and 
plunge of test 
particles 

• Farway observers: 
particle locks onto 
the horizon, 
redshifts away

21

4

0 500 1000 1500 2000 2500 3000 3500

−4

−2

0

2

t / M 

lo
g
1
0
h
+ 2
2 (a)

0 500 1000 1500 2000 2500 3000 3500
−6

−4

−2

0

2

t / M 

lo
g
1
0
h
+ 2
2 (c)

0 500 1000 1500 2000 2500 3000 3500
−6

−4

−2

0

2

lo
g
1
0
h
+ 2
2

t / M

(b)

3300 3320 3340 3360 3380 3400
−2.2
−2

−1.8

3300 3320 3340 3360 3380 3400
−4.5
−4

−3.5

3300 3320 3340 3360 3380 3400
−5.5
−5

−4.5

FIG. 1: The waveforms h+
22 as functions of the time t for

ϵ = 1 × 10−6 (top panel, (a)), for ϵ = 5 × 10−5 (middle
panel, (b)), and for ϵ = 1 × 10−4 (bottom panel, (c)). The
insets show short segments of the waveforms to emphasize the
oscillations.

nential, but for small values of ϵ it is a power law. Similar
results are also found for h×

22.

B. The frequency

The frequency of of gravitational radiation is predicted
by Gralla et al [4] to be twice the horizon frequency. The
latter is Ω+ = a/(2Mr+), where r+ is the event horizon,
located at r+ = M +

√
M2 − a2. To test how our fre-

quencies agree with this prediction, we expand the hori-
zon frequency in ϵ, 1 − 2MΩ+ =

√
2ϵ + O(ϵ). In Fig. 2

we show the angular frequency of the gravitational ra-
diation, ω, as a function of time for several values of ϵ.
Specifically, we show (1 − Mω)/

√
2ϵ − 1 as a function

of M/t. This quantity should approach 0 as M/t → 0.
(More accurately, it should approach −ϵ.) Our data are
clearly consistent with this expectation. Notice that for
large values of ϵ (i.e., ϵ ! 10−4) the frequency starts os-
cillating at large values of the time. The reason for this
behavior is that as the field’s amplitude decays exponen-
tially in time the numerical accuracy is compromised. We
infer that indeed the frequency of the gravitational waves
in the ringdown phase is twice the horizon frequency.

C. The amplitude

Next, we present the amplitude of the field in Fig. 3.

Specifically, we present
∣

∣(h+
22)

2 + (h×
22)

2
∣

∣

1/2
as a function

of the time.
Figure 3 suggests a transient behavior of decay rate

M/t. To better illustrate this transient behavior we plot
in Fig. 4 the amplitude as function of inverse time, in
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FIG. 2: The frequency of the gravitational waves as a function
of (inverse) time. Specifically, we show (1−Mω)/

√
2ϵ− 1 as

a function of M/t. We show the frequency for several values
of ϵ.
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FIG. 3: The amplitude of the field h22 as a function of the
time t. Shown are the amplitudes for several values of ϵ. In all
cases we removed the fields’ oscillations to show the amplitude
in a clearer way. The actual fields oscillate as shown in Fig. 1.

addition to a reference line M/t. Figure 4 shows that
the smaller ϵ, the later the amplitude “peels off” the M/t
behavior, and eventually becomes exponential, as is the
case with quasi-normal radiation of non-NEK black holes.
This transient behavior is similar to the one found by
Yang et al for a source-free scalar field [1].
In Fig. 5o we study the decay rate more precisely.

Specifically, we consider as Ansatz for the gravitational
case the behavior found in [1] for a source-free scalar field,
specifically,

h+,×
22 ≈

√
ϵ

e−
√

ϵ/(8t)

1− e−
√

ϵ/(2t)
. (4)

Burko, Khanna (2016)


