Transient instabilities of nearly extremal black holes

Aaron Zimmerman (CITA) with Samuel Gralla and Peter Zimmerman arXiv:1608.04739

Capra 20 June 20, 2017

1

Instability of extremal horizons

- No exponentially growing modes (Whiting 1989)
- Aretakis (2010): r derivs of scalars decay outside, not on horizon
- Two derivs grow unbounded
- Generalized: all extremal BHs, kinds of fields, beyond axisym
- What happens in nearextremal systems?

Aretakis (2010, 2012), Lucietti and Reall (2012), Casals et al. (2016)

Black hole perturbation theory

- Wave prop around BHs
- Perts to spacetime
- Orbits of test bodies
- Test for stability: modal, linear

$$\Phi A_{\mu} \longrightarrow \psi \qquad \Box_{s} \psi = \mathcal{T} h_{\mu\nu}$$

$$\psi_{lm\omega} \sim e^{-i\omega t + im\phi} R_{lm\omega}(r) S_{lm\omega}(\theta)$$

Modes of nearly extremal BHs

 Rapid rotation: new expansion param

$$\epsilon = \sqrt{1 - (a/M)^2}/2 \ll 1$$

- Match near horizon to far region: $R_{lm\omega}$
- Analytically appx QNM freq, decay

$$\omega_R \approx m\Omega_H \quad \gamma_n \approx \epsilon(n+1/2)$$

Slow decay!

Teukolsky and Press (1974), Detweiler (1980), Hod (2008), Yang et al. (2012, 2013a, 2013b)

Wavefunctions of nearly extremal BHs

Wavefunctions of nearly extremal BHs

Teukolsky and Press (1974), Detweiler (1980), Hod (2008), Yang et al. (2012, 2013a, 2013b)

Wavefunctions of nearly extremal BHs

Matching with BCs gives

$$\omega_{lmn} = \frac{m}{2} - \epsilon \left[\delta + i \left(n + \frac{1}{2} \right) \right]$$
$$\delta^2 = 4(\omega r_+)^2 - (s + 1/2)^2 - {}_s \lambda_{lm\omega}$$

Teukolsky and Press (1974), Detweiler (1980), Hod (2008), Yang et al. (2012, 2013a, 2013b)

• Have source-free solutions

$$\psi_{lm\omega} \sim e^{-i\omega v + im\tilde{\phi}} R_{lm\omega}(r) S_{lm\omega}(\theta)$$

• Build response func in time domain

$$G(x^{\mu}, x^{\mu'}) = \frac{1}{2\pi} \sum_{l,m} \int d\omega \, e^{-i\omega v} \tilde{g}_{lm\omega}(r, r') \Omega(\theta, \theta', \tilde{\phi}, \tilde{\phi}')$$

$$\tilde{g}_{lm\omega} = \frac{w(r')R_{lm\omega}^{\rm in}(r')R_{lm\omega}^{\rm up}(r)}{2i\omega A_{\rm in}(\omega)}$$

• Inverse Laplace transform

$$G(x^{\mu}, x^{\mu'}) \sim \sum_{l,m} \int d\omega \, e^{-i\omega v} \frac{w(r') R_{lm\omega}^{\rm in}(r') R_{lm\omega}^{\rm up}(r)}{2i\omega A_{\rm in}}$$

• Inverse Laplace transform

$$G(x^{\mu}, x^{\mu'}) \sim \sum_{l,m} \int d\omega \, e^{-i\omega v} \frac{w(r') R_{lm\omega}^{\rm in}(r') R_{lm\omega}^{\rm up}(r)}{2i\omega A_{\rm in}}$$

• Inverse Laplace transform

$$G(x^{\mu}, x^{\mu'}) \sim \sum_{l,m} \int d\omega \, e^{-i\omega v} \frac{w(r') R_{lm\omega}^{\rm in}(r') R_{lm\omega}^{\rm up}(r)}{2i\omega A_{\rm in}}$$

$$|G_{\text{QNM}}| \sim \epsilon^{-1/2-s} e^{-\epsilon v} \left(1+e^{-\epsilon v}\right)^{-1/2+s} \left[1+\frac{4x}{\epsilon} \left(1-e^{-\epsilon v}\right)\right]^{-1/2-s}$$

$$|G_{\rm QNM}| \sim \begin{cases} V^{3/2} \left(1 + \frac{Vx}{4}\right)^{-3/2} & V \ll 1/\epsilon \\ \epsilon^{-3/2} e^{-\epsilon V/2} \left(1 + \frac{4x}{\epsilon}\right)^{-3/2} & V \gg 1/\epsilon \end{cases}$$

Near-horizon response

- Collective response: transient QNM growth
- + For grav and EM perts, early growth to large amplitudes Grav $\sim \epsilon^{-3/2}$ EM $\sim \epsilon^{-1/2}$
- Scalar fields only decay, but r derivs grow transiently

Instability through modes

- Smooth transition to horizon instability
- As $\epsilon \to 0$, modes collect into a branch point

- Casals, Gralla, P. Zimmerman (2016): Branch point gives power law response
- Radial der: unbounded growth for scalars (m = l)

$$\partial_x^d G_{\text{late}}(x=0) | \sim v^{d+s-1/2}$$

Physical picture: Near horizon extremal Kerr

- Extremal black holes hide a lot at the horizon
- Make a coord transform

$$\bar{v} = \frac{2\epsilon v}{M}$$
 $\bar{x} = \frac{x}{4\epsilon}$ $\bar{\phi} = \tilde{\phi} - \Omega_H v$ $\epsilon \to 0$

$$ds^{2} = -\bar{x}(\bar{x}+2)d\bar{v}^{2} + 2d\bar{v}d\bar{x} + 4(d\bar{\phi} + (\bar{x}+1)d\bar{v})^{2}$$

- Result: NHEK spacetime, not asymp flat
- More symmetries, Kerr/CFT duality

Bardeen, Press, Teukolsky (1972); Bardeen, Horowitz (1999); Guica et al. (2009); many others...

Physical picture: Nearly extremal Kerr

- Imprint of NHEK remains when $\epsilon \ll 1$
- Near horizon region has natural coords \bar{x}^{μ}
- Transform $x^{\mu} \rightarrow \bar{x}^{\mu}$ large
- Finite perts in \bar{x}^{μ} have steep gradients in x^{μ}
- GF: regions are connected

$$G_{\rm QNM} = \sum_{lm} \epsilon^{-3/2} \mathcal{G}_{lm}(\bar{x}^{\mu}, x^{\mu\prime})$$

Possible consequences

- Infalling probes generically see large fields: BHs as particle accelerators
- EM fields grow near BH, drive unique dynamics?
- Grav perts enhanced, stronger backreaction?
- Enhance grav turbulence?

$$|G_{\text{QNM}}| \sim [\bar{x}'(1+\bar{x}')]^s e^{-\bar{V}/4} \\ \times \sum_{n=0}^{\infty} \frac{\Gamma(2i\delta - n)}{\Gamma(\alpha_+ - n)^2 n!} (-e^{-n\bar{V}/2})_2 F_1(\alpha_+, \alpha_-, \alpha_+ - n, -\bar{x}')$$

$$|G_{\rm QNM}| \sim [\bar{x}'(1+\bar{x}')]^s e^{-\bar{V}/4}$$

$$\times \sum_{n=0}^{\infty} \frac{\Gamma(2i\delta - n)}{\Gamma(\alpha_+ - n)^2 n!} (-e^{-n\bar{V}/2})_2 F_1(\alpha_+, \alpha_-, \alpha_+ - n, -\bar{x}')$$

$$\sim \left(\frac{\bar{x}'}{1+\bar{x}'}\right)^s e^{-s\bar{V}/4} z^{1-\alpha_+} {}_2F_1(1-\alpha_+,1-\alpha_+,1-2i\delta,z)$$

$$z = \frac{e^{-\bar{V}/2}}{1 + \bar{x}'(1 - e^{-\bar{V}/2})}$$
14

- Response is regular in near-horizon coordinates
- Growth rates initially to the power 2s
- Again scalars decay but EM, grav fields grow
- s < 0 and axisymmetric cases still TBD

Summary

- Perts of nearly extremal BHs experience transient growth near horizon
- QNM perspective: consequence of collective oscillation of many modes
- Physical picture: result of (almost) singular map between near-horizon region and asymptotic observers
- Outlook: many potential consequences to explore

EXTRAS

 $G_{\text{QNM}} \sim \sum_{n} \frac{e^{-i\omega_n(t-r_*-r'_*)}}{d\mathcal{W}/d\omega|_{\omega_n}}$

 $G_{\text{QNM}} \sim \sum_{n} \frac{e^{-i\omega_n(t-r_*-r'_*)}}{\frac{d\mathcal{W}/d\omega|_{\omega_n}}{|\mathbf{x}|_{\mathbf{x}}}}$

ġ

$$G_{\text{QNM}} \sim \sum_{n} \frac{e^{-i\omega_{n}(t-r_{*}-r_{*}')}}{d\mathcal{W}/d\omega|_{\omega_{n}}}$$
$$\sim e^{-im\Omega_{H}T}e^{-\epsilon T/2} \sum_{n} \frac{\epsilon (-1)^{n}e^{-n\epsilon T}}{n!\Gamma[2i\delta-n]}$$

• Sum gives a surprise

$$G_{\rm QNM} \sim e^{-im\Omega_H T} \frac{\epsilon \, e^{-\epsilon T/2}}{1 - e^{-\epsilon T}}$$

$$G_{\text{QNM}} \sim \sum_{n} \frac{e^{-i\omega_{n}(t-r_{*}-r_{*}')}}{d\mathcal{W}/d\omega|_{\omega_{n}}}$$
$$\sim e^{-im\Omega_{H}T}e^{-\epsilon T/2} \sum_{n} \frac{\epsilon (-1)^{n}e^{-n\epsilon T}}{n!\Gamma[2i\delta-n]}$$

$$G_{\text{QNM}} \sim e^{-im\Omega_H T} \frac{\epsilon e^{-\epsilon T/2}}{1 - e^{-\epsilon T}}$$
$$\sim \begin{cases} e^{-im\Omega_H T} T^{-1} & T \ll 1/\epsilon \\ \epsilon e^{-im\Omega_H T - \epsilon T/2} & T \gg 1/\epsilon \end{cases}$$

Power law ringdown

- This collective excitation provides a unique ringdown
- Initially a power-law endecay
- Slowest mode takes over at end

$$|G| \sim \begin{cases} T^{-1} & T \ll 1/\epsilon \\ \epsilon e^{-\epsilon T/2} & T \gg 1/\epsilon \end{cases}$$

Yang, AZ et al (2013) 19

Power law ringdown

Power law ringdown

Yang, AZ et al (2013) 20

Strange chirps, power law from plunge

- Related effects seen in the inspiral and plunge of test particles
- Farway observers: particle locks onto the horizon, redshifts away

Gralla et al (2016) 21

- Related effects seen in the inspiral and plunge of test particles
- Farway observers: particle locks onto the horizon, redshifts away

Burko, Khanna (2016)

