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• Various approximations to the two body problem  [Post-Newtonian (PN), 
Post-Minkowskian (PM) and Small Mass Ratio (SMR)] have different domains of 
validity in the “compactness - mass ratio“ parameter space.

• We want a Hamiltonian which is 
not PN truncated and that 
contains information at linear 
order in   .  

•  SMR terms linear in the 
symmetric mass ratio               , 
but at very high PN orders have 
been included in the EOB 
Hamiltonians. [Bini, Damour, 
Geralico, Kavanagh, …]

MOTIVATIONS

• The Effective One Body (EOB) theory can extend these domains of validity.

[Akcay, Barausse, Buonanno, 
Damour, Le Tiec, van de Meent,…]
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CURRENT EOB HAMILTONIAN FOR NON-
SPINNING BLACK HOLES

• The EOB theory is based on an energy map linking the real two-body 
problem to an effective one:

HEOB = M 1+ 2ν
HEff

µ
−1⎛

⎝⎜
⎞
⎠⎟

• At 2PN order, the effective body moves on a geodesic of a deformed 
Schwarzschild spacetime [Buonanno-Damour (1998)]. At 3PN order, non-geodesic 
terms must be inserted in a quartic-momenta term Q. [Damour-Jaranowski-
Schaefer (2000)]

HEff

µ
= A(u,ν )[1+ pφ

2u2 + A(u,ν )D(u,ν )−1 pr
2 +Q(u, pr ,ν )]

• Q depends in principle on      and      . In DJS2000, Q only depends on     . This is 
the DJS gauge.

pr prpφ

Reduced mass
Total mass reduced 

inverse 
radius

reduced angular momentum
reduced radial momentum

M = M1 +M 2

µ = Mν
pφ
pr

u = 1/ R
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• [Le Tiec et al.(2011), Barausse et al. (2011)] used the first law of binary black hole 
mechanics to calculate the linear in    correction to the potential A(u,   ):
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THE LIGHT RING DIVERGENCE

• The Detweiler redshift              incorporates the SMR data in the EOB theory.

A(u,ν ) = ASchw +νaSMR[u, zSMR(u)]= 1− 2u +ν zSMR(u) 1− 3u − u 1+ 1− 4u
1− 3u

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

uLR = 1/ 3

zSMR(u)

• Possible presence of a divergence in A(u,   ) at the Schwarzschild LR (                   ).  
[Barausse et al. (2011)]

Why do we expect the procedure to lead to a divergence?

• In the circular orbit limit,        is:

•  At the LR, the circular orbit binding energy                                 is dominated by:

pφ
∂HEOB

∂u pr=0

= 0→ pφ
2
circ
∼ (1− 3u)−1

ν

ν ν

EB circ =
HEOB circ −1

ν

EB circ
∼ HEff

2
pr=0

u→uLR⎯ →⎯⎯ aSMR[u, zSMR(u)]× pφ
2
circ
∼ (1− 3u)−3/2 → aSMR[u, zSMR(u)]∼ (1− 3u)

−1/2
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THE LIGHT RING DIVERGENCE

• [Akcay et al. (2012)] confirmed this divergence when data for              were made 
available up to the LR. 

A(u,ν ) = ASchw +νaSMR[u, zSMR(u)]= 1− 2u +ν zSMR(u) 1− 3u − u 1+ 1− 4u
1− 3u

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

uLR = 1/ 3

zSMR(u)

zSMR(u)

• Possible presence of a divergence in A(u,   ) at the Schwarzschild LR (                   ).  
[Barausse et al. (2011)]

• The Detweiler redshift              incorporates the SMR data in the EOB theory.
ν

• [Le Tiec et al.(2011), Barausse et al. (2011)] used the first law of binary black hole 
mechanics to calculate the linear in    correction to the potential A(u,   ):ν ν
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Why is the divergence a problem?

• Comparison with a Numerical Relativity (NR) simulation from [Ossokine et al. 
(2017)]

• The EOBSMR [DJS gauge] contains a divergence at the LR.

THE LIGHT RING DIVERGENCE



• [Damour (2017)] introduced the Energy gauge in the context of PM calculations.
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• The key idea is to push the divergence onto          , so to recover it only in the 
circular orbit limit, where we physically expect it.

A NEW GAUGE

HEff = HSchw
2 +δHEff

2 [u,HSchw (u, pr , pφ )]

• The gauge depends on a new variable, the Schwarzschild Hamiltonian          . 
In the circular orbit limit,           diverges at the LR, but it is regular at the LR for generic 
orbits.

HSchw = (1− 2u)[1+ pφ
2u2 + (1− 2u)pr

2 ] pφ ,circ=[u(1−3u )]
−1/2

pr=0
⎯ →⎯⎯⎯⎯⎯ HSchw circ

= 1− 2u
1− 3u

HSchw

HSchw

HSchw



1) Calculate linear in     , circular orbit binding energy as a function of frequency. 
2) Equate to binding energy from [Le Tiec et al. (2011)] at fixed frequency. 
3) Impose that the      coefficients are smooth at the LR, in order to get:
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ABSORBING THE LIGHT RING DIVERGENCE

• The fit for the Detweiler redshift from [Akcay et al. (2012)] has the form:

zSMR =
1

(1− 3u)3/2
z0 (u)+ z1(u) 1− 3u + z2 (u)ln

(1− 2u)2

1− 3u
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

• Since                           , we propose the following Hamiltonian:

Xi

X0 =
z0 (u)− (1− 4u)u

(1− 2u)3

X1 =
z1(u)− u
(1− 2u)2

X2 =
z2 (u)
(1− 2u)3

The     coefficients are regular at the LR. 

        The divergence has been absorbed 
by the Schwarzschild Hamiltonians.

HEff
2 = HSchw

2 + (1− 2u)ν X0HSchw
3 + X1HSchw

2 + X2HSchw
3 ln(HSchw

2 )⎡⎣ ⎤⎦

HSchw circ
= 1− 2u

1− 3u

⇒

Xi

ν



•  We evolve EOB Hamiltonians via the Hamilton equations (with EOB flux     ): 

1)                            2)                          3)                                          4)                             

• The EOBSMR [DJS gauge] 
Hamitonian is the one 
analytically calculated in 
[Barausse et al. (2012)]. 

Fφ

dpφ
dt

= Fφ
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EVOLUTION OF THE MODEL

dR
dt

= A(R)
D(R)

∂HEOB

∂pR*
Ω = dφ

dt
= ∂HEOB

∂pφ

• Here the radius                is used. The radial momentum is calculated in tortoise 
coordinates.

dpR*
dt

= − A(R)
D(R)

∂HEOB

∂R
+ Fφ

pR*
pφ

• We use R(t) as a proxy 
for the behaviour of the 
EOBSMR dynamics at 
the LR.

R = 1/u
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BINDING ENERGY VS NR

• NR data for the binding energy from [Ossokine et al. (2017)].
• We stop the evolution at the Schwarzschild LR.

• We compare the fractional difference of energy                            until merger 
between the EOB and NR as a function of the angular momentum.

ΔEbind / ENR(%)
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BINDING ENERGY VS NR

• We stop the evolution at the Schwarzschild LR.
• NR data for the binding energy from [Ossokine et al. (2017)].
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ΔEbind / ENR(%)• We compare the fractional difference of energy                            until merger 
between the EOB and NR as a function of the angular momentum.



WHAT WAS DONE: 

•  We built a first example of EOB Hamiltonian informed by the SMR approximation 
that contains terms linear in    . The Hamiltonian can be evolved smoothly through 
the LR.

TO DO: 

•  Better fit for the redshift, with new SMR data from M. van de Meent.
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CONCLUSIONS

ν

•  We found that the EOBSMR differs by around 2% from NR at merger.
• We found that EOB binding energy performs slightly better against NR when the  
 DJS gauge, instead of the Energy gauge, is used.

• Compare the Hamiltonian to a larger set of NR data to assess its accuracy.

•  Include higher orders in     from PN expansion in the Energy gauge.

• Build an EOBNR-SMR waveform model based on the new gauge.

ν


