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Multiscale for EMRIs - why it's needed

v

Main problem for getting post-adiabatic waveforms is bringing down the
phase error

1 (1/2)
¢ = E[¢(O)+\ﬁm(‘l'2 +e¢(1) +...]

» resonances to be covered in future work

v

) adiabatic order is comparatively easy, just need dissipative first order
self-force

» ¢1: post-adiabatic order is delicate; scaling arguments suggest that we
will require:
> Dissipative part of second-order self force

> Conservative first-order self force effects

» Slow deviation from geodesic motion (beyond osculating geodesics - maybe
small see Peter Diener’s talk)

» Slow accretion of central mass and spin (O(u) over full inspiral)

> An osculating geodesics approach would neglect the true history and the
evolution of spacetime (Note: not yet formulated at second order)

Post-adiabatic multiscale Cornell University



Multiscale for EMRIs - why it's needed

Main problem for getting post-adiabatic waveforms is bringing down the
phase error

v

1 ~ 2)
b= E[¢(°)+\/m“ D tep™ 4.0

» resonances to be covered in future work

v

) adiabatic order is comparatively easy, just need dissipative first order
self-force

» ¢1: post-adiabatic order is delicate; scaling arguments suggest that we
will require:
> Dissipative part of second-order self force

> Conservative first-order self force effects

> Slow deviation from geodesic motion (beyond osculating geodesics - maybe
small see Peter Diener’s talk)

» Slow accretion of central mass and spin (O(u) over full inspiral)

» Self-consistent includes full slow evolution of worldline, but (without
modification) does not accurately track slow evolution of the spacetime
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Multiscale for EMRIs - why it's needed

Main problem for getting post-adiabatic waveforms is bringing down the
phase error

v

1 e
b= E[¢(°)+\/m“ D tep™ 4.0

» resonances to be covered in future work

v

) adiabatic order is comparatively easy, just need dissipative first order
self-force

» ¢1: post-adiabatic order is delicate; scaling arguments suggest that we
will require:
> Dissipative part of second-order self force

> Conservative first-order self force effects

> Slow deviation from geodesic motion (beyond osculating geodesics - maybe
small see Peter Diener’s talk)

> Slow accretion of central mass and spin (O(u) over full inspiral)

> Currently, multiscale method is the best suggested technique to directly
compute all required effects
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Prior work applying multiscale to EMRIs

» Mino and Price (2008)

> A proof-of-concept computation of flat space
Klein-Gordon scalar radiation-reaction for a quasicircular
case, through post-adiabatic order

» Hinderer and Flanagan (2008)

> First major step in computing the multiscale dynamics;
presented the equations for the orbit itself assuming field
solution input

» Pound (2015)

> Returned to quasicircular scalar case, now with a quadratic
source chosen to emulate gravitational nonlinearity

> Uncovered and resolved a critical problem at large scales:
an infrared divergence arises from periodicity construction
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> Mathematical preliminaries
> Multiscale methods for EMRIs

> Near small object : 7 < M
Puncture [Pound,Miller],
multiscale worldline

O(e~1M)

172 > Interaction zone: |r.| < M/e

O(e M) Multiscale wave equation
M

O(M) » Far zone: r« > M
Geometric optics, with some
Post-Minkowski techniques;

Extending [Pound 2015]

Near Horizon

> Near-Horizon: 7. < —M
Black hole perturbation theory
[lsoyama,Pound, Tanaka, Yamada]

Two Timescale

matching

\4

(future work) Resonances
Geometric Optics




< XK /.

O M)

O(E_]/QM)
O(M)

Near Horizon

Puncture

2M + O(w)

O(u)
Two Timescale

matching

Geometric Optics

v

Mathematical preliminaries

Multiscale methods for EMRIs

Near small object : 7 < M
Puncture [Pound,Miller],
multiscale worldline

Interaction zone: |r.| < M/e
Multiscale wave equation

Far zone: 7. > M
Geometric optics, with some
Post-Minkowski techniques;
Extending [Pound 2015]

Near-Horizon: r,. < —M
Black hole perturbation theory
[lsoyama,Pound, Tanaka,Yamada]

(future work) Resonances



EMRIs as a weakly nonlinear oscillator

» A two-companion system with
w/M=e<1

» The general problem:

A
Iy ..

K[

> An (instantaneously) nearly geodesic
worldline, source scale ~

> Generates weak metric perturbations ~ ¢

> Weak metric perturbations satisfy a
weakly nonlinear wave equation, from
suppression of quadratic sources

» The motion is non-conservative

> gravitational radiation carries energy,
angular momentum, and Carter to
I"', Ht

."A..

» Large separation of timescales Tomir << TRr

Post-adiabatic multiscale Cornell University



Approximating weakly nonlinear differential

equations

» The general problem we wish to solve:

with well-understood oscillator differential operator

DIf ()] + eQ[f ()] =0,

D and nonlinear operator Q.

» A naive approximation takes,

F) ~ O +efP) + ...,

where

> However, typically D is conservative, while eQ
introduces dissipation, so at late times,

DIt =0

6f(l) ~ f(O)

D——

——

——

=

=

mmm Jeading approx.
mmmm 1% order approx.
mmmm true solution

Post-adiabatic multiscale

Cornell University



» Dissipation from weak nonlinearity is slow compared to oscillations,
Thiss ~ €Tosc

> General procedure:
> Introduce a pair of time variables {(, t}, strictly periodic ¢, { = et

> Promote all physical variables f(t) — f’(¢, %)
> Promote all differential operators D — D' = D|at—>n(£)a¥,+eat-
> Solve differential equations order-by-order for f()(p, %) and Q™) (%)

> Projection to physical solution f(t) via,

~ d -
t=¢et Eap—ﬂ(t)



Fixed fast time,
varying slow time

T

i

Fixed slow time, varying fast time

Fast-time slice
att=3

Fast-time slice

Fast-time slice
att=1

Physical time

extracts full decay,
depends on both slow
and fast times
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> Mathematical preliminaries
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Multiscale methods for EMRIs

Near small object : 7 < M
Puncture [Pound,Miller],
multiscale worldline

Interaction zone: |r.| < M/e
Multiscale wave equation

Far zone: 7. > M
Geometric optics, with some
Post-Minkowski techniques;
Extending [Pound 2015]

Near-Horizon: r. < —M
Black hole perturbation theory
[lsoyama,Pound, Tanaka, Yamada]

(future work) Resonances




Multiscale approximation construction

v

Multiscale approximation promotes time dependence to multiple
(3 fast, 1 slow) variables t — {1, ¢},

w=t+ ar)

bk S O RO
£ — 0,0

w = %w = ew
» Action angle variables ¢ = ¢ + O(€?) used from celestial mechanics
solutions
Metric and worldline ansatz:
Gas =003 (') + eh (@, 4", ") + R (@, 4%, o) + O()
2 =2, ¢*) + ez(l)(w,q )+ O()

STIINE d[esnNA

> Incorporating slow-time evolution (w) into the leading solutions preserves
quality of approximation for the entire inspiral ~ M?/pu, and incorporates
radiation-reaction worldline into subleading source

Post-adiabatic multiscale Cornell University



Problems at long distances: rapid slow time transmission

v

For each slow time, we find the
appropriate fast-time solution
h<")(azl,1b7q‘4)
» True evolution assembled from a path S
Steady frequency

through the 4-dimensional {w, qA} on spacelike surfaces

of constant T unphysical

» Quasi-conserved quantities
{E© (@), L (1), Q) ()} are
constant over a surface of constant @
> For spacelike constant w surfaces,
transmission of information to
distances of ~ M /e in times of ~ M
unphysical

STIINE d[esnNA

Post-adiabatic multiscale Cornell University



Problems at long distances: rapid slow time transmission

» For each slow time, we find the
appropriate fast-time solution
W™ (2, @, q™)
> True evolution assembled from a path Hyperbolic surfaces
give close enough
through the 4-dimensional {w, qA} 7223;‘!&;;223‘,@, heory

» Quasi-conserved quantities
(B (w), L (@), Q) (w)} are
constant over a surface of constant @
> For spacelike constant w surfaces,
transmission of information to
distances of ~ M /e in times of ~ M
unphysical

v

STIINE d[esnNA

Solution: enforce surfaces of constant w
are asymptotically null
> Transmission to near-retarded time at
It and near-advanced time at HT
acceptable, approximation convergence
restored

Post-adiabatic multiscale Cornell University



Breakdown at long distances: extended source

> At large scales of integration domain, another more subtle problem causes
a failure of convergence [Pound 2015]

v

Multiscale assumes radiation timescale longer than all other time scales

v

At each order we solve a wave equation of the form
D4
DthMV = S(xl7 q 7w)7
for some source S.

> At long scales, inverting [J 4 assumes an eternal source (in q*), so fills
space with radiation

Leading second-order source scales as ~ Q2 /r?
> Leads to a divergent second order solution if taken over full spatial domain

v

STIINE d[esnNA

> Divergence arises even with asymptotically null time variable [Pound 2015]

> A separate approximation is needed for |r*| > M

Post-adiabatic multiscale Cornell University



> Mathematical preliminaries
> Multiscale methods for EMRIs

> Near small object : 7 < M
Puncture [Pound,Miller],
multiscale worldline

O M)

> Interaction zone: |r.| < M/e
Multiscale wave equation

O M)
oM)

Near Horizon

» Far zone: r« > M
Geometric optics, with some
Post-Minkowski techniques;
Extending [Pound 2015]

> Near-Horizon: 7. < —M
Black hole perturbation theory
[lsoyama,Pound, Tanaka, Yamada]

Two Timescale

matching

\4

(future work) Resonances
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Multiscale action-angle equations of motion

> Perform an action-angle variable decomposition for each fixed w, including
source terms determined by slow time derivatives

» Forcing terms are determined form self-acceleration as

z
[aF)] A an
= :@a
wn
M 5pN
é gy, 0T OPY L
ol OPN Opt
 —
() » Finally, action-angle variables obey the multiscale equations:
o
= dg* A ()M 1M
s o =W =w APOM (@) 4+ PO (0, g) + ..

E. + Eg(l)A( P]\/I) +€2 (2)A( A7P1\J) + O(ed)
o
=S

dJ]\/[ )

o :EG(I)]W(QA,PIM) + 62G(2)]\{(qA,P]\/I) + O(ES)

Post-adiabatic multiscale Cornell University



Near-identity transformations

uoruedwon) [[ews 1eaN

The idea: perform a small alteration to the action-angle {g**, J™} to
simplify the equations of motion

Recently shown to have significant practical importance for rapid
computations [Van de Meent, Warburton 2018] See Niels’ talk next

Can be used to entirely eliminate [Flanagan, Vines] the angle-variable
dependence of self force terms,

- M
’LGkA

IM M
JT=J +6kAQA

1A A

7 ~A 8wA M
L A Z IO (gk*‘ B aJMTkA)

Resulting equations of motion have only zero-frequency forcing terms,

aq'A :wA(P]W) +eg’(1>A(J’M) +62gl(2)A(JII\/I)
ow
oJ™M (1) M 2 ~1(2) [ M
=G’V (M) + EGP (M)
ow

Post-adiabatic multiscale
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Puncture correction from subleading worldline

uoruedwon) [[ews 1eaN

v

Require the puncture metric hfﬂ through
second order

Formulated in [Pound,Miller] in terms of
distance to exact worldline h” (z)

Instead, for two timescale, worldline is
perturbatively expanded

Z”:Zm)“(q w)JreZ(l)u( D) + O(e )

Gives an O(u) displacement from fiducial
worldline = dipole correction

Expansion of covariant puncture
accomplished via techniques presented in
[Pound 2015], adjusted to coordinate
multiscale time derivatives

——
A7Z of center

of mass
=> dipole

Post-adiabatic multiscale
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Mapping back to worldline expansion

» Corrections to puncture require an explicit form of zm(q’A, J’M) not
explicitly given in action-angle equations of motion

> To obtain this inversion, we perturbatively expand
dz' _ psg”
dw — psgvs

» Requires information from leading and subleading frequencies (%), Q)
> Subleading frequencies include self-force contributions (g*)

> Action variable frequencies 8H/dJ4 = w” determined by inverting
oJ*> OPY — 57,
OPB 8J,

v

uoruedwon) [[ews 1eaN

Oscillatory dependence of self forces g and G* must be restored in order
to obtain full fast-time orbits - all p, QM) depend explicitly on both
JM ¢4, gt GM directly

Post-adiabatic multiscale Cornell University



> Mathematical preliminaries
> Multiscale methods for EMRIs

> Near small object : 7 < M
Puncture [Pound,Miller],
multiscale worldline

» Interaction zone : |r.| < M/e
Multiscale wave equation

> Far zone: 7. > M
Geometric optics, with some
Post-Minkowski techniques;
Extending [Pound 2015]

> Near-Horizon: 7. < —M
Black hole perturbation theory
[lsoyama,Pound, Tanaka, Yamada]
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(future work) Resonances
Geometric Optics



Two timescale wave equations for Lorenz gauge

> Practical computations using explicit EFE will likely be performed in
Lorenz gauge, promoted to multiscale

_

E VO RO —q
g VO RO | g O e g
8. > Imposition of Lorenz gauge gives multiscale relaxed EFE expansion
= SEL W] = = 6B WM + 87T, = SET
D SEQIR®) = — SB[ - 2B B, AV SED[RY] = sE
® ":D » Effective source formalism - recall talks by Peter Diener, Seth Hopper
» Puncture metric determined by z* expansion, discussed earlier
_—

» Corrections to geodesic motion incorporated via E) terms

Post-adiabatic multiscale
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Teukolsky-Lousto-Campanelli overview

» Teukolsky-Lousto-Campanelli formalism offers a way of computing Weyl

scalars wé%, wSQ/L without first finding the respective metric perturbations.

_

> first order:

WY V] =47 Tin

WEOQ) [.074%(11)] =473 T_o
> second order:
W] =S 12[h D) - W )
WO o4 =5 2] - W [p~ )]

907 UOTIDRIU]

» Second-order source depends on all components of h(*) - must be
reconstructed

» TLC equations do not explicitly restrict £ < 2, static completion must be
— inferred [Merlin et. al.]

> Slow variation can be computed from reconstructed h(!)

Post-adiabatic multiscale Cornell University



Teukolsky-Lousto-Campanelli subtleties

v

A sketch of the implementation details, not yet thoroughly developed:

_

» Need to reconstruct h!), so prefer leading TLC to be on the physical
pointlike source, rather than effective source
> Sharp feature at all ¢, at radius of source, require EHS [Barack,Ori,Sago]
and transition condition from source recall from talks by Maarten, Zachary

> Static completion part obtained by [Merlin et. al.]

» Expect second-order equations to become ill-defined without
regularization, so effective source must be used

® » At second order, an extended inhomogeneous source as well as a sharp
feature at the radius of the orbit
> Use extended particular solutions [Hopper, Evans] : separately get regular
solution by integrating separation of vars from outside and from inside,
— transition at sharp feature

907 UOTIDRIU]
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Slow variations for spacetime

_

907 UOTIDRIU]

» General scaling: O(e?) flux, M /e time

> O(eM) alteration in spacetime moments

over time
> leading order must include 6 M ,da

09ap
0(Ma)

o :(sM(w)%gﬁ + 5(Ma)(®)

+ Fap(PM, ")

» What about other secular parts, like spin
orientation, overall boost, or more subtle
‘charges’ from BMS:

> Each of these ilntroduce a slow-time
dependent 6h,, (@), but each can (at

fixed w) be removed with a gauge
transformation

> = up to gauge, all of these effects give
rise to a non-removable 6hfﬁ) (), but
that's post-2-adiabatic.

Post-adiabatic multiscale

Cornell University



Determining 0 M, da in Lorenz gauge

v

Consider the additional quasistatic part of
the metric perturbation separately, permit
a different gauge:

_

(0) (0)
a1 _Og - dg
h =5 SM () + (adl)

+FO @', P ")

d(aM)(w)

E\,, annihilates the 99 parts of variation

v

In the multiscale Lorenz gauge, the gauge
condition becomes dynamical

907 UOTIDRIU]
v

(1), R(V)pv (0)p R(2)pv _
@ v h +VPh =0
> In a general sense, this condition is the
— constraint which preserves stress-energy
conservation on the long scale of the
inspiral

N
N

AN\

Post-adiabatic multiscale
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Determining 0 M, da in TLC

_

907 UOTIDRIU]

Instead of the Lorenz gauge giving
conservation information, more generally
we need to consult the EFE itself

The quasistatic £ = 0 part of
the EFE determines the slowly varying parts

/cﬁ QR Y] = a(r)0a6M + B(r)dabal(ii)
/dSquQRf;T)[h“)] = 7(r)8a6M + B(r)dada(i)

These can then be inverted with the EFE
to obtain formulas in terms of the
second-order Ricci R[h™"), h(})]

Note that these derivations intuitively
require metric reconstruction to determine
quadratic ‘fluxes’

Post-adiabatic multiscale
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Fluxes for orbital dynamics: overview

» First order version initially developed by
[Gal'tsov; Sago,Fujita; Ganz et. al.]

» At first order, the balance law relations

_

Flux out
et imply give an equality of conserved Fhux down to null infinity
E quantities at the orbit and asymptotic fluxes
™D de©
= — 5[: h(1)>
a < d;—E> <u s 2 2
o a _ . (1)out (1)down
g ¢<E>fzzw<a<Z ) +[?’(Z ))
2 2°
S (T (a (e a(e)
O /7
® ,-:D > A similar identity holds for Carter constant
evolution [Mino et. al.] ttraned" enerey )
apped" energy anc
.. angul
> At second order, we should anticipate a ;zgcz ;2;11;:1;(:111[;?;1&”“5
— similar description, but with corrections
> “Schott” terms from trapped energy in
the system

Post-adiabatic multiscale Cornell University



Fluxes for orbital dynamics: second order formulas

_

907 UOTIDRIU]

» Using the quadratic contribution to second-order self-force [Pound], we
derive the second order form of flux balance

(155) =3 aratead) +  (umatwne (7))

G %af (uun(J™)

> This is gauge invariant as per full gauge transformation from [Pound '15]

> We are currently developing a version for Carter constant as well

» Additional manipulation expresses this as a sum of contributions:
> Direct quadratic fluxes from h(ARA(MUR products

» Corrections associated deviations from homogeneity of h(DR

> Integrals over instantaneous in @w worldline of

> Quadratic terms in A"
> Terms with h(*) multiplied by gauge vector to Rad. gauge ¢
> Terms ~ Ogh™"

> Terms ~ 0y (¢

Post-adiabatic multiscale Cornell University



Computational cost?

> A great deal of information can be ‘cached’ by analogy to the osculating
geodesics formalism
> First order solution is a rigorously correct interpolation across
instantaneously geodesic solutions

_

[—

= > The interpolation requires highly accurate frequencies Q(w), which require

g second-order solutions

—

% > Second order is a combination of a part sourced also by

=. instantaneously-geodesic contributions and a part which involves explicit

g time derivatives

g » Parameter space : {€,a,dM, 5a,E(0),E(l),Lgo),Lg),Q(O),Q(l)}

= > Perhaps this seems a bit daunting?

D

® > Note that the internal spacing in each dimension of leading and subleading
parameters does not have to be as small as if we used E = E© + EM) for
which we would need spacings < eu
|

> Something I'd be interested in hearing discussion and objections from those
that might consider implementations of multiscale

Post-adiabatic multiscale Cornell University
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> Mathematical preliminaries

v

Multiscale methods for EMRIs

Near small object : 7 < M
Puncture [Pound,Miller],
multiscale worldline

Interaction zone: |r.| < M/e
Multiscale wave equation

Far zone : 7. > M
Geometric optics, with some
Post-Minkowski techniques;
Extending [Pound 2015]

Near-Horizon: r. < —M
Black hole perturbation theory
[lsoyama,Pound, Tanaka, Yamada]

(future work) Resonances




Geometric optics for the far zone

>

>

QU077 It/

-

Spatial scales vary with Z* ~ ex*, on scale with slow inspiral

Construct ansatz with single fast variation parameterized by scalar
function ©(z")/e

_ (S
guv (2", €) =¢ : (mw +ehp [27] + 52j;w [iy7 g]
+ %k {i", g} + 0(64))

The rescaling of the coordinates grants an additional order to the
weak waves, as they depend on 1/r = ¢/7

At leading order, the wave equation for this expansion gives simple 1/7
radiation dependence

1 . .
;3@],43 + 0700 jaB =0

Subleading Lorenz gauge condition constrains additional components of j

The geometric optics EFE at subleading order fixes the nonvanishing
non-TT parts of oscillatory k.

Post-adiabatic multiscale Cornell University



Third order equations - quasistatic jg

Impose Lorenz gauge on the quasistatic part jo

Background correction 4+ General wave equation
Dj(),uu[i'u] + R;J,Uuijo'p - - <G£L2l}2) []a]}>
» Solvable via techniques first introduced by [Blanchet and Damour]

» Particular retarded solution written as integral:

v v

s
= . 1 [ SWE_3) 2 [(5—F)BkHH2 (54 5)B-kHr2
Jjo=FPBoo| 5t dz = s =
N K(B) J; 7k 7
o . . . . .
=  » With some manipulation, we can re-write the retarded solution as a further
™ split of homogeneous + particular solution
Ve
) = U .
Jo,e = 3L% + i (u)

Quasistatic j match inward to the interaction zone to inform quasistatic
mode boundary conditions

e

Post-adiabatic multiscale Cornell University



Third order quasistatic - asymptotic evaluation

> Evaluate integral assuming large 7. Geometric optics construction
gives G2 ~ 772

r

£
g _ (71 2 L) (geoy; 2 1n (7
it =5 | dz <2 In +n§:1 n) <G [J:J]> + O(F " In(7))

el @
5 Ji(@) 5 1 =/ A@2D\ (s e
oL = = oL K, [m ds <G > (8)(u —8)

» Scales similarly with ¢ to outgoing waves - ‘memory’-like effect

auoy 1eq (A1ap)

» Scaled coordinates Z explicitly incorporate the long scale
dependence of the system

> Region of nonlinear source r ~ M/e = 7 ~ M

Post-adiabatic multiscale Cornell University



> Mathematical preliminaries
> Multiscale methods for EMRIs

> Near small object : 7 < M
Puncture [Pound,Miller],
multiscale worldline

> Interaction zone : |r| < M/e
Multiscale wave equation

» Far zone: r« > M
Geometric optics, with some
Post-Minkowski techniques;
Extending [Pound 2015]

> Near-Horizon: 7. < —M
Black hole perturbation theory
[lsoyama,Pound, Tanaka, Yamada]

O(n)
Two Timescale

matching
» (future work) Resonances
Geometric Optics




Resonances: They're trouble

S9OURUOSIY

A resonant orbit is one in which two
characteristic frequencies (e.g. Q" and
Q%) are related by a rational value

In the multiscale formalism, resonances
cause orbit-averages to develop O(1)
corrections

Scaling arguments indicate that the
duration of the resonant alteration
should be ~ M/\/€

Over the course of the resonance, the
orbit obtains a phase correction ~ 1//¢
and a geodesic parameter PM correction
of ~ \/ep [Flanagan,Hinderer 2010]
> Significant phase errors will result from
ignoring a resonance should it be
present

Post-adiabatic multiscale
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Resonances: We really can't avoid them

» Low-order resonances occur frequently
in the geodesic parameter space,
particularly dense near the ISCO [Brink,
Geyer, Hinderer 2015]

» As shown by a study by [Ruangsti,
Hughes 2014]

> low-order resonances are ubiquitous in

parameter space

> The 3:1 resonance, very close to the
ISCO occurred for all cases examined

S9OURUOSIY

@ > Order of resonance enters scale of effect
as Ap ~1/4/(n+m)e
> We may need to track resonances to
order |n| + |m| ~ log(e) [From general
scaling arguments from Arnold et. al.]

Post-adiabatic multiscale

Cornell University



The ideas of what we can do

» Multiscale is not invalidated in the case of a resonance, just in need of
correction

» Before and after the resonance, the standard non-resonant strategy holds,
but needs /e scale terms

pM :P(O)IVI+ﬁP(1/2)NI+€P(1)J\l+O(€3/2)

1
qA =< (q(O)A + \ﬁq(l/Q)A +€q(1)A + 0(63/2))

S9OURUOSIY

> We will also need the ‘jumps’ across the resonances in the phase and
® geodesic parameters [see computation by Van de Meent 2014]

> In general, during the transient resonance, a third time scale emerges
t ~ /et, and the dynamics can be computed using a multiscale expansion

Post-adiabatic multiscale Cornell University



Multiscale tapestry approximations

» We now have a nearly complete, comprehensive
framework for multiscale approximations

» The description of the interaction zone and far zone
are now well-understood

> We are currently working steadily towards publication
of a complete (hopefully implementation-friendly)
description

> Several methods work in concert to form a globally
valid approximation scheme

> Multiscale approximations are the only current
technique which hold the promise to capture all
post-adiabatic effects consistently

» Future work for multiscale

> resonances: generally introduce powers e!/2

Post-adiabatic multiscale Cornell University
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