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Multiscale for EMRIs - why it’s needed

I Main problem for getting post-adiabatic waveforms is bringing down the
phase error

φ =
1

ε
[φ(0)+

√
εφ(1/2) + εφ(1) + . . . ]

I resonances to be covered in future work

I φ(0): adiabatic order is comparatively easy, just need dissipative first order
self-force

I φ(1): post-adiabatic order is delicate; scaling arguments suggest that we
will require:

I Dissipative part of second-order self force

I Conservative first-order self force effects

I Slow deviation from geodesic motion (beyond osculating geodesics - maybe
small see Peter Diener’s talk)

I Slow accretion of central mass and spin (O(µ) over full inspiral)

I An osculating geodesics approach would neglect the true history and the
evolution of spacetime (Note: not yet formulated at second order) ()
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phase error
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1
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εφ(1/2) + εφ(1) + . . . ]

I resonances to be covered in future work

I φ(0): adiabatic order is comparatively easy, just need dissipative first order
self-force

I φ(1): post-adiabatic order is delicate; scaling arguments suggest that we
will require:

I Dissipative part of second-order self force

I Conservative first-order self force effects

I Slow deviation from geodesic motion (beyond osculating geodesics - maybe
small see Peter Diener’s talk)

I Slow accretion of central mass and spin (O(µ) over full inspiral)

I Self-consistent includes full slow evolution of worldline, but (without
modification) does not accurately track slow evolution of the spacetime
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Multiscale for EMRIs - why it’s needed

I Main problem for getting post-adiabatic waveforms is bringing down the
phase error

φ =
1

ε
[φ(0)+

√
εφ(1/2) + εφ(1) + . . . ]

I resonances to be covered in future work

I φ(0): adiabatic order is comparatively easy, just need dissipative first order
self-force

I φ(1): post-adiabatic order is delicate; scaling arguments suggest that we
will require:

I Dissipative part of second-order self force

I Conservative first-order self force effects

I Slow deviation from geodesic motion (beyond osculating geodesics - maybe
small see Peter Diener’s talk)

I Slow accretion of central mass and spin (O(µ) over full inspiral)

I Currently, multiscale method is the best suggested technique to directly
compute all required effects ()
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Prior work applying multiscale to EMRIs

I Mino and Price (2008)
I A proof-of-concept computation of flat space

Klein-Gordon scalar radiation-reaction for a quasicircular
case, through post-adiabatic order

I Hinderer and Flanagan (2008)
I First major step in computing the multiscale dynamics;

presented the equations for the orbit itself assuming field
solution input

I Pound (2015)
I Returned to quasicircular scalar case, now with a quadratic

source chosen to emulate gravitational nonlinearity

I Uncovered and resolved a critical problem at large scales:
an infrared divergence arises from periodicity construction
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Zones and scales of approximation methods

Near Horizon

Geometric Optics

matching

Two Timescale

Puncture

I Mathematical preliminaries

I Multiscale methods for EMRIs

I Near small object : r̄ �M
Puncture [Pound,Miller],
multiscale worldline

I Interaction zone: |r∗| �M/ε
Multiscale wave equation

I Far zone: r∗ �M
Geometric optics, with some
Post-Minkowski techniques;
Extending [Pound 2015]

I Near-Horizon: r∗ � −M
Black hole perturbation theory
[Isoyama,Pound,Tanaka,Yamada]

I (future work) Resonances
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EMRIs as a weakly nonlinear oscillator

I A two-companion system with
µ/M ≡ ε� 1

I The general problem:
I An (instantaneously) nearly geodesic

worldline, source scale ∼ µ

I Generates weak metric perturbations ∼ ε

I Weak metric perturbations satisfy a
weakly nonlinear wave equation, from
suppression of quadratic sources

I The motion is non-conservative
I gravitational radiation carries energy,

angular momentum, and Carter to
I+, H+

I Large separation of timescales Torbit � TRR
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Approximating weakly nonlinear differential equations

I The general problem we wish to solve:

D[f(t)] + εQ[f(t)] = 0,

with well-understood oscillator differential operator
D and nonlinear operator Q.

I A naive approximation takes,

f(t) ≈ f (0)(t) + εf (1)(t) + . . . ,

where
D[f (0)(t)] = 0

I However, typically D is conservative, while εQ
introduces dissipation, so at late times,

εf (1) ∼ f (0)

leading approx.
1   order approx.
true solution

st
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multiscale expanded domain and computation

I Dissipation from weak nonlinearity is slow compared to oscillations,
Tdiss ∼ εTosc

I General procedure:
I Introduce a pair of time variables {ϕ, t̃}, strictly periodic ϕ, t̃ = εt

I Promote all physical variables f(t)→ f ′(ϕ, t̃)

I Promote all differential operators D → D′ = D|∂t→Ω(t̃)∂ϕ+ε∂t̃

I Solve differential equations order-by-order for f (n)(ϕ, t̃) and Ω(n)(t̃)

I Projection to physical solution f(t) via,

t̃ = εt
d

dt
ϕ = Ω(t̃)
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multiscale expanded domain and computation

Physical time
 extracts full decay,
 depends on both slow
 and fast times

Fast-time slice
 at t = 2

Fast-time slice
 at t = 1

~

~

Fixed slow time, varying fast time

t
~

Fixed fast time,
varying slow time

Values in
full twotime
space

φ
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Zones and scales of approximation methods

I Mathematical preliminaries

I Multiscale methods for EMRIs

I Near small object : r̄ �M
Puncture [Pound,Miller],
multiscale worldline

I Interaction zone: |r∗| �M/ε
Multiscale wave equation

I Far zone: r∗ �M
Geometric optics, with some
Post-Minkowski techniques;
Extending [Pound 2015]

I Near-Horizon: r∗ � −M
Black hole perturbation theory
[Isoyama,Pound,Tanaka,Yamada]

I (future work) Resonances
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Multiscale approximation construction

M
u

ltis
c
a
le

 E
M

R
Is

I Multiscale approximation promotes time dependence to multiple
(3 fast, 1 slow) variables t→ {w̃, qA},

w = t+ α(r)

w̃ =
µ

M
w ≡ εw dϕA

dw
= ΩA(w̃, ε)

I Action angle variables ϕA = qA +O(ε2) used from celestial mechanics
solutions

I Metric and worldline ansatz:

gαβ =g
(0)
αβ (xi) + εh

(1)
αβ(w̃, qA, xi) + ε2h

(2)
αβ(w̃, qA, xi) +O(ε3)

zµ =z(0)(w̃, qA) + εz(1)(w̃, qA) +O(ε2)

I Incorporating slow-time evolution (w̃) into the leading solutions preserves
quality of approximation for the entire inspiral ∼M2/µ, and incorporates
radiation-reaction worldline into subleading source
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Problems at long distances: rapid slow time transmission

M
u

ltis
c
a
le

 E
M

R
Is

I For each slow time, we find the
appropriate fast-time solution
h(n)(xi, w̃, qA)

I True evolution assembled from a path
through the 4-dimensional {w̃, qA}

I Quasi-conserved quantities

{E(0)(w̃), L
(0)
z (w̃), Q(0)(w̃)} are

constant over a surface of constant w̃
I For spacelike constant w̃ surfaces,

transmission of information to
distances of ∼M/ε in times of ∼M
unphysical

I Solution: enforce surfaces of constant w̃
are asymptotically null

I Transmission to near-retarded time at
I+ and near-advanced time at H+

acceptable, approximation convergence
restored
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Breakdown at long distances: extended source

M
u

ltis
c
a
le

 E
M

R
Is

I At large scales of integration domain, another more subtle problem causes
a failure of convergence [Pound 2015]

I Multiscale assumes radiation timescale longer than all other time scales

I At each order we solve a wave equation of the form

�qAhµν = S(xi, qA, w̃),

for some source S.

I At long scales, inverting �qA assumes an eternal source (in qA), so fills
space with radiation

I Leading second-order source scales as ∼ Ω2/r2

I Leads to a divergent second order solution if taken over full spatial domain

I Divergence arises even with asymptotically null time variable [Pound 2015]

I A separate approximation is needed for |r∗| �M
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Zones and scales of approximation methods

I Mathematical preliminaries
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Multiscale action-angle equations of motion
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I Perform an action-angle variable decomposition for each fixed w̃, including
source terms determined by slow time derivatives

I Forcing terms are determined form self-acceleration as

gA =
∂qA

∂pµ
aµ

FMµ =
∂JM

∂PN
∂PN

∂pµ
aµ,

I Finally, action-angle variables obey the multiscale equations:

dqA

dw
= ΩA =ωA[P (0)M (w̃) + εP (1)M (w̃, qA) + . . . ]

+ εg(1)A(qA, PM ) + ε2g(2)A(qA, PM ) +O(ε3)

dJM

dw
=εG(1)M (qA, PM ) + ε2G(2)M (qA, PM ) +O(ε3)
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Near-identity transformations
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I The idea: perform a small alteration to the action-angle {qA, JM} to
simplify the equations of motion

I Recently shown to have significant practical importance for rapid
computations [Van de Meent, Warburton 2018] See Niels’ talk next

I Can be used to entirely eliminate [Flanagan, Vines] the angle-variable
dependence of self force terms,

J ′M =JM + ε
iG̃MkA

kAΩA

q′A =qA + ε
i

kAΩA

(
g̃AkA −

∂ωA

∂JM
TMkA

)
I Resulting equations of motion have only zero-frequency forcing terms,

∂q′A

∂w
=ωA(PM ) + εg′(1)A(J ′M ) + ε2g′(2)A(J ′M )

∂J ′M

∂w
=εG′(1)(J ′M ) + ε2G′(2)(J ′M )
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Puncture correction from subleading worldline
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I Require the puncture metric hPαβ through
second order

I Formulated in [Pound,Miller] in terms of
distance to exact worldline hP(z)

I Instead, for two timescale, worldline is
perturbatively expanded

zµ = z(0)µ(qA, w̃) + εz(1)µ(qA, w̃) +O(ε2)

I Gives an O(µ) displacement from fiducial
worldline ⇒ dipole correction

I Expansion of covariant puncture
accomplished via techniques presented in
[Pound 2015], adjusted to coordinate
multiscale time derivatives

Z
(0)

Z
(1)

True
worldline

}

ΔZ of center
of mass
=> dipole
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Mapping back to worldline expansion

N
ear S

m
all C

o
m

p
an

io
n

I Corrections to puncture require an explicit form of z(1)(q′A, J ′M ) not
explicitly given in action-angle equations of motion

I To obtain this inversion, we perturbatively expand

dzi

dw
=

pβg
iβ

pβgwβ

I Requires information from leading and subleading frequencies Ω(0), Ω(1)

I Subleading frequencies include self-force contributions 〈gA〉

I Action variable frequencies ∂H/∂JA ≡ ωA determined by inverting

∂Jα

∂Pβ
∂P γ

∂Jα
= δγβ

I Oscillatory dependence of self forces gA and GM must be restored in order
to obtain full fast-time orbits - all p(1), Ω(1) depend explicitly on both
J ′M , q′A, gA, GM directly
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Zones and scales of approximation methods

I Mathematical preliminaries

I Multiscale methods for EMRIs

I Near small object : r̄ �M
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Two timescale wave equations for Lorenz gauge

I Practical computations using explicit EFE will likely be performed in
Lorenz gauge, promoted to multiscale

∇(0)
µ h(1)µν =0

∇(1)
µ h(1)µν +∇(0)

µ h(2)µν =0

I Imposition of Lorenz gauge gives multiscale relaxed EFE expansion

δE(0)
µν [hR(1)] =− δE(0)

µν [hP(1)] + 8πT̄µν ≡ SR eff(1)
µν

δE(0)
µν [hR(2)] =− δE(0)

µν [hP(2)]− δ2E(0)
µν [h(1), h(1)]− δE(1)

µν [h(1)] ≡ SR eff(2)
µν

I Effective source formalism - recall talks by Peter Diener, Seth Hopper

I Puncture metric determined by zµ expansion, discussed earlier

I Corrections to geodesic motion incorporated via E(1) terms
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Teukolsky-Lousto-Campanelli overview

I Teukolsky-Lousto-Campanelli formalism offers a way of computing Weyl

scalars ψ
(1)

0/4, ψ
(2)

0/4 without first finding the respective metric perturbations.

I first order:

W
(0)
+2 [ψ

(1)
0 ] =4πΣT+2

W
(0)
−2 [ρ−4ψ

(1)
4 ] =4πΣT−2

I second order:

W
(0)
+2 [ψ

(2)
0 ] =S+2[h(1)]−W (1)

+2 [ψ
(1)
0 ]

W
(0)
−2 [ρ−4ψ

(2)
4 ] =S−2[h(1)]−W (1)

−2 [ρ−4ψ
(1)
4 ]

I Second-order source depends on all components of h(1) - must be
reconstructed

I TLC equations do not explicitly restrict ` < 2, static completion must be
inferred [Merlin et. al.]

I Slow variation can be computed from reconstructed h(1)
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Teukolsky-Lousto-Campanelli subtleties

I A sketch of the implementation details, not yet thoroughly developed:

I Need to reconstruct h(1), so prefer leading TLC to be on the physical
pointlike source, rather than effective source

I Sharp feature at all `, at radius of source, require EHS [Barack,Ori,Sago]
and transition condition from source recall from talks by Maarten, Zachary

I Static completion part obtained by [Merlin et. al.]

I Expect second-order equations to become ill-defined without
regularization, so effective source must be used

I At second order, an extended inhomogeneous source as well as a sharp
feature at the radius of the orbit

I Use extended particular solutions [Hopper, Evans] : separately get regular
solution by integrating separation of vars from outside and from inside,
transition at sharp feature
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Slow variations for spacetime

I General scaling: O(ε2) flux, M/ε time
I O(εM) alteration in spacetime moments

over time

I leading order must include δM ,δa

h
(1)
αβ =δM(w̃)

∂gαβ
∂M

+ δ(Ma)(w̃)
∂gαβ
∂(Ma)

+ Fαβ(PM , qA)

I What about other secular parts, like spin
orientation, overall boost, or more subtle
‘charges’ from BMS:

I Each of these introduce a slow-time
dependent δh

(1)
αβ(w̃), but each can (at

fixed w̃) be removed with a gauge
transformation

I ⇒ up to gauge, all of these effects give

rise to a non-removable δh
(2)
αβ(w̃), but

that’s post-2-adiabatic.
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Determining δM , δa in Lorenz gauge

I Consider the additional quasistatic part of
the metric perturbation separately, permit
a different gauge:

h(1) =
∂g(0)

∂M
δM(w̃) +

∂g(0)

∂(aM)
δ(aM)(w̃)

+ F (1)(xi, PM , qA)

I Eµν annihilates the ∂g(0) parts of variation

I In the multiscale Lorenz gauge, the gauge
condition becomes dynamical

∇(1)
µ hR(1)µν +∇(0)

µ hR(2)µν = 0

I In a general sense, this condition is the
constraint which preserves stress-energy
conservation on the long scale of the
inspiral
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Determining δM , δa in TLC

I Instead of the Lorenz gauge giving
conservation information, more generally
we need to consult the EFE itself

I The quasistatic ` = 0 part of
the EFE determines the slowly varying parts∫
d3qd2ΩR

(1)
tr [h(1)] = α(r)∂ũδM + β(r)∂ũδa(ũ)∫

d3qd2ΩR
(1)
φr [h(1)] = γ(r)∂ũδM + β(r)∂ũδa(ũ)

I These can then be inverted with the EFE
to obtain formulas in terms of the
second-order Ricci R[h(1), h(1)]

I Note that these derivations intuitively
require metric reconstruction to determine
quadratic ‘fluxes’
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Fluxes for orbital dynamics: overview

I First order version initially developed by
[Gal’tsov; Sago,Fujita; Ganz et. al.]

I At first order, the balance law relations
imply give an equality of conserved
quantities at the orbit and asymptotic fluxes〈
dE(0)

dτ̃

〉
=
〈
uαuβLξh(1)

αβ

〉
⇒
〈
dE

dτ̃

〉
=
∑

iω

(
α
(
Z(1)out

)2

+ β
(
Z(1)down

)2
)

〈
dLz
dτ̃

〉
=
∑

im

(
α
(
Z(1)out

)2

+ β
(
Z(1)down

)2
)

I A similar identity holds for Carter constant
evolution [Mino et. al.]

I At second order, we should anticipate a
similar description, but with corrections

I “Schott” terms from trapped energy in
the system

Orbit

Flux down 
horizon

Flux out 
to null infinity

}

"trapped" energy and

gives rise to Schott terms
angular momentum
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Fluxes for orbital dynamics: second order formulas

I Using the quadratic contribution to second-order self-force [Pound], we
derive the second order form of flux balance〈

dE(1)

dτ̃

〉
=

1

2

〈
uαuβLξh(2)

αβ

〉
+

1

8

〈
uαuβuγuδLξ

(
h

(1)R
αβ h

(1)R
γδ

)〉
− ∂τ̃

〈
ξβuγh

(1)R
βγ

〉
− 1

2
∂τ̃
〈
Euαuβh(1)R

αβ

〉
I This is gauge invariant as per full gauge transformation from [Pound ’15]

I We are currently developing a version for Carter constant as well

I Additional manipulation expresses this as a sum of contributions:
I Direct quadratic fluxes from h(2)Rh(1)R products

I Corrections associated deviations from homogeneity of h(1)R

I Integrals over instantaneous in w̃ worldline of
I Quadratic terms in h(1)

I Terms with h(1) multiplied by gauge vector to Rad. gauge ζ

I Terms ∼ ∂w̃h
(1)

I Terms ∼ ∂w̃ζ
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Computational cost?

I A great deal of information can be ‘cached’ by analogy to the osculating
geodesics formalism

I First order solution is a rigorously correct interpolation across
instantaneously geodesic solutions

I The interpolation requires highly accurate frequencies Ω(w̃), which require
second-order solutions

I Second order is a combination of a part sourced also by
instantaneously-geodesic contributions and a part which involves explicit
time derivatives

I Parameter space : {ε, a, δM, δa,E(0), E(1), L
(0)
z , L

(1)
z , Q(0), Q(1)}

I Perhaps this seems a bit daunting?

I Note that the internal spacing in each dimension of leading and subleading
parameters does not have to be as small as if we used E = E(0) +E(1), for
which we would need spacings � εµ

I Something I’d be interested in hearing discussion and objections from those
that might consider implementations of multiscale
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I Multiscale methods for EMRIs

I Near small object : r̄ �M
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Geometric optics for the far zone

I Spatial scales vary with x̃i ∼ εxi, on scale with slow inspiral

I Construct ansatz with single fast variation parameterized by scalar
function Θ(xν)/ε

gµν(xν , ε) =ε−2

(
ηµν + εhµν [x̃ν ] + ε2jµν

[
x̃ν ,

Θ

ε

]
+ ε3kµν

[
x̃ν ,

Θ

ε

]
+O(ε4)

)
I The rescaling of the coordinates grants an additional order to the

weak waves, as they depend on 1/r = ε/r̃

I At leading order, the wave equation for this expansion gives simple 1/r̃
radiation dependence

1

r̃
∂ΘjAB + ∂r̃∂ΘjAB = 0

I Subleading Lorenz gauge condition constrains additional components of j

I The geometric optics EFE at subleading order fixes the nonvanishing
non-TT parts of oscillatory kµν
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Third order equations - quasistatic j0

I Impose Lorenz gauge on the quasistatic part j0

I Background correction + General wave equation

�j0µν [x̃ν ] +Rµ
σ
ν
ρj0σρ = −

〈
G(2,2)
µν [j, j]

〉
I Solvable via techniques first introduced by [Blanchet and Damour]

I Particular retarded solution written as integral:

j0 = FPB→0

[
1

K(B)

∫ ∞
r̃

dz̃
S(k)(t̃− z̃)

r̃k
ˆ̃
∂L

(
(z̃ − r̃)B−k+l+2 − (z̃ + r̃)B−k+l+2

r̃

)]
I With some manipulation, we can re-write the retarded solution as a further

split of homogeneous + particular solution

j0,` = ∂̃L
jG` (u)

r̃
+ jH` (u)

I Quasistatic j match inward to the interaction zone to inform quasistatic
mode boundary conditions
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Third order quasistatic - asymptotic evaluation

I Evaluate integral assuming large r̃. Geometric optics construction
gives G(2,2) ∼ r̃−2

jH` =
n̂L
r̃

∫ ∞
0

dz̃

(
1

2
ln

z̃

2r̃
+
∑̀
n=1

1

n

)〈
G(2,2)[j, j]

〉
+O(r̃−2 ln(r̃))

∂̃L
jG` (ũ)

r̃
= ∂̃L

1

r̃Kk

∫ ũ

−∞
ds̃
〈
G(2,2)

〉
(s̃)(ũ− s̃)`

I Scales similarly with ε to outgoing waves - ‘memory’-like effect

I Scaled coordinates x̃ explicitly incorporate the long scale
dependence of the system

I Region of nonlinear source r ∼M/ε⇒ r̃ ∼M
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Zones and scales of approximation methods

I Mathematical preliminaries

I Multiscale methods for EMRIs

I Near small object : r̄ �M
Puncture [Pound,Miller],
multiscale worldline

I Interaction zone : |r∗| �M/ε
Multiscale wave equation

I Far zone: r∗ �M
Geometric optics, with some
Post-Minkowski techniques;
Extending [Pound 2015]

I Near-Horizon: r∗ � −M
Black hole perturbation theory
[Isoyama,Pound,Tanaka,Yamada]

I (future work) Resonances
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Resonances: They’re trouble

I A resonant orbit is one in which two
characteristic frequencies (e.g. Ωr and
Ωθ) are related by a rational value

I In the multiscale formalism, resonances
cause orbit-averages to develop O(1)
corrections

I Scaling arguments indicate that the
duration of the resonant alteration
should be ∼M/

√
ε

I Over the course of the resonance, the
orbit obtains a phase correction ∼ 1/

√
ε

and a geodesic parameter PM correction
of ∼

√
εµ [Flanagan,Hinderer 2010]

I Significant phase errors will result from
ignoring a resonance should it be
present
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Resonances: We really can’t avoid them

I Low-order resonances occur frequently
in the geodesic parameter space,
particularly dense near the ISCO [Brink,
Geyer, Hinderer 2015]

I As shown by a study by [Ruangsri,
Hughes 2014]

I low-order resonances are ubiquitous in
parameter space

I The 3:1 resonance, very close to the
ISCO occurred for all cases examined

I Order of resonance enters scale of effect
as ∆ϕ ∼ 1/

√
(n+m)ε

I We may need to track resonances to
order |n|+ |m| ∼ log(ε) [From general
scaling arguments from Arnold et. al.]
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The ideas of what we can do

I Multiscale is not invalidated in the case of a resonance, just in need of
correction

I Before and after the resonance, the standard non-resonant strategy holds,
but needs

√
ε scale terms

PM = P (0)M +
√
εP (1/2)M + εP (1)M +O(ε3/2)

qA =
1

ε

(
q(0)A +

√
εq(1/2)A + εq(1)A +O(ε3/2)

)
I We will also need the ‘jumps’ across the resonances in the phase and

geodesic parameters [see computation by Van de Meent 2014]

I In general, during the transient resonance, a third time scale emerges
t̂ ∼
√
εt, and the dynamics can be computed using a multiscale expansion
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Multiscale tapestry approximations

I We now have a nearly complete, comprehensive
framework for multiscale approximations

I The description of the interaction zone and far zone
are now well-understood

I We are currently working steadily towards publication
of a complete (hopefully implementation-friendly)
description

I Several methods work in concert to form a globally
valid approximation scheme

I Multiscale approximations are the only current
technique which hold the promise to capture all
post-adiabatic effects consistently

I Future work for multiscale
I resonances: generally introduce powers ε1/2
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