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@ Introduction to Background Spacetime.
@ Perturbation Equation in presence of Extra Dimensions.

© Possible signatures of extra dimensions in the Quasi-Normal
Modes.
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Why Extra Dimensions?

@ The basic motivation for existence of extra dimensions is the
renormalization of Higgs mass.

@ The counter-term needed for mass renormalization
corresponds to,

Mass Renormalization

— (Au — )\12;) +log. div. + finite terms

@ Since the cutoff scale A is in the Planck regime, we must have
a fine tuning of the couplings to get renormalized Higgs mass
at the Electro-weak scale.

@ Extra dimension is one particular method, which was invoked
to solve the above issue.
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The background spacetime

@ The five dimensional gravitational field equations read

Field Equations

GAB = 87TG(5) TAB

@ When the bulk energy momentum tensor is originating from a
negative cosmological constant A, one arrives at the following
static and spherically symmetric solution on the brane,

Background Metric

- dr?
d5121nperturbed =é€ 2y <_f(r)dt2 = m = r2dQ2> + dy2
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Pictorial Visualization
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Effective Field Equations

T. Shiromizu, K. Maeda and M. Sasaki, PRD 62, 024012 (2000).
R. Maartens and K. Koyama, Liv. Rev. Rel. 13, 5 (2010)

@ The normal ny = Vay, yields the induced metric on the brane
hypersurface to be hag = gas — nang, such that nAh‘B‘ =0.

Effective Field Equations

(4) Gu + Ew =0

@ Here E,,, stands for a particular projection of the bulk Weyl
tensor Cagcp on the brane hypersurface

B _C_D

A
E/u/ = CABCDeHn el, n
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Perturbation to first order

@ Perturbation of the effective field equations around the bulk
metric gag, such that gag — gag + has.

@ There are redundant gauge degrees of freedom. The following
gauge conditions (known as the Randall-Sundrum gauge)

Gauge Condition

Vahh =0,  hA=0;  hag = hapelen

@ The perturbed bulk metric takes the following form,

Perturbed Bulk Metric

dspz)erturbed = [qaﬁ(ya Xu) + ha,@(y, XM)] andX/B + dy2
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The Imprints of Extra Dimensions

@ The imprints of the presence of extra dimensions are through
two quantities — (a) Size of the extra dimension d and (b)
the bulk curvature scale ¢ = 1/k.

@ The dimensionless ratio d/¢ is an important one and if one
wishes to solve the hierarchy problem we must have d/¢ > 12.

@ The above model can also be written as a Brans-Dicke theory,
with the Brans-Dicke parameter wyq(d/¥).

@ Thus to be consistent with local physics we must have
d/¢>5.

@ Finally, the black hole mass and the bulk curvature scale has
to satisfy some constraint to avoid the Gregory-Laflamme
instability.

Sumanta Chakraborty QNM and Higher Dimensions



The Evolution of Perturbations

@ Assuming a separable perturbation
hap(y, x*) = hag(x*)x(y), the perturbed effective equations
can be decomposed into two parts:

Separability

e 2ky {—k2>< + 3k, x + 83)(} = —M?x(y)
@0k + 2has WRS, — M2hy =0

o With M = 0, one immediately recovers the dynamical
equation governing gravitational perturbation in general
relativity.
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The Kaluza-Klein Mass Modes

@ The equation for x(y) is essentially Bessel's differential
equation and hence it's two independent solutions are

@ The boundary conditions imposed are derivatives of y = 0 at
y =0 and also on y = d. This leads to the following algebraic
equation

Yufl(mn/k)-/ufl(zn) - Jufl(mn/k)yufl(zn) =0

o Here m, = {z,k}e ¥ are Kaluza-Klein mode masses.
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The axial Perturbation equations on the brane

@ In this case there are two master variables, u,; and v,
respectively and their evolution equations read

axial perturbation

(/41 6 m?

Dum/—{—f(r){mfﬂ— (r2 )_,,3}””7’+f(r)r3?vm/:0
I(1+1

Dvn,/—kf(r){m%—i- (r+2 )}v,,,/—i-4f(r)u,,’/:0

o Here, D is the differential operator 92 — 92, where r, is the
tortoise coordinate defined using f(r) as dr. = dr/f(r).
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Quasi-Normal Modes

Table: Imaginary parts of the quasi-normal mode frequencies have been
presented for d/¢ =20;1/¢ =6 x 10.

m=0.44,] =2 m=083,/=2

Imaginary Imaginary
-0.051 -0.038
-0.071 -0.104
-0.197 -0.168
-0.239 -0.369
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Quasi-Normal Modes for General Relativity
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Figure: Time evolution of the master mode function u, (t) associated
with axial gravitational perturbation for two different values of angular
momentum / in the context of general relativity have been depicted.
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Quasi-Normal Modes — |

Ug,» and uy , in Linear Scale
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Figure: Time evolution of the master mode function uj (t) for general
relativity (n = 0) as well as with the lowest lying Kaluza-Klein mode
mass m; = 0.44 and | = 2.
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Quasi-Normal Modes — I

V. Cardoso, E. Franzin and P. Pani, PRL 116, 171101 (2016)
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Figure: Time evolution of the master mode function uj (t) for general
relativity (n = 0) as well as with the lowest lying Kaluza-Klein mode
mass my; = 0.44 and |=3.
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The Late-Time Behaviour

)

G

M,

M/
£/0.1mm

logy (

Sumanta Chakraborty QNM and Higher Dimensions

=
w

=
o

ul

" ..~UNSTABLE CONFIGURATIONS

15

20

dje

25

30

35

21

18

15

12



@ We have discussed how the presence of extra dimensions will
modify the black hole perturbation equations.

@ Possible modifications of the black hole quasi-normal modes
and distinct features.

@ Late time behaviour of the black hole perturbations.
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Thank You |
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The Late-Time Behaviour

o At late times the frequencies can be written in an analytical
manner, such that,

Late Time Behaviour

fo = z,e2(9/9(0.1mm/¢)Hz
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