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Why Extra Dimensions?

The basic motivation for existence of extra dimensions is the
renormalization of Higgs mass.

The counter-term needed for mass renormalization
corresponds to,

Mass Renormalization

δm2
H =

Λ2

8π2
(
λH − λ2F

)
+ log. div. + finite terms

Since the cutoff scale Λ is in the Planck regime, we must have
a fine tuning of the couplings to get renormalized Higgs mass
at the Electro-weak scale.

Extra dimension is one particular method, which was invoked
to solve the above issue.
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The background spacetime

The five dimensional gravitational field equations read

Field Equations

GAB = 8πG(5)TAB

When the bulk energy momentum tensor is originating from a
negative cosmological constant Λ, one arrives at the following
static and spherically symmetric solution on the brane,

Background Metric

ds2unperturbed = e−2ky

(
−f (r)dt2 +

dr2

f (r)
+ r2dΩ2

)
+ dy2
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Pictorial Visualization
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Effective Field Equations
T. Shiromizu, K. Maeda and M. Sasaki, PRD 62, 024012 (2000).

R. Maartens and K. Koyama, Liv. Rev. Rel. 13, 5 (2010)

The normal nA = ∇Ay , yields the induced metric on the brane
hypersurface to be hAB = gAB − nAnB , such that nAh

A
B = 0.

Effective Field Equations

(4)Gµν + Eµν = 0

Here Eµν stands for a particular projection of the bulk Weyl
tensor CABCD on the brane hypersurface

Weyl Stress

Eµν = CABCDe
A
µ n

BeCν n
D
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Perturbation to first order

Perturbation of the effective field equations around the bulk
metric gAB , such that gAB → gAB + hAB .

There are redundant gauge degrees of freedom. The following
gauge conditions (known as the Randall-Sundrum gauge)

Gauge Condition

∇Ah
A
B = 0; hAA = 0; hAB = hαβe

α
Ae

β
B

The perturbed bulk metric takes the following form,

Perturbed Bulk Metric

ds2perturbed =
[
qαβ(y , xµ) + hαβ(y , xµ)

]
dxαdxβ + dy2
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The Imprints of Extra Dimensions

The imprints of the presence of extra dimensions are through
two quantities — (a) Size of the extra dimension d and (b)
the bulk curvature scale ` = 1/k .

The dimensionless ratio d/` is an important one and if one
wishes to solve the hierarchy problem we must have d/` ≥ 12.

The above model can also be written as a Brans-Dicke theory,
with the Brans-Dicke parameter ωbd(d/`).

Thus to be consistent with local physics we must have
d/` ≥ 5.

Finally, the black hole mass and the bulk curvature scale has
to satisfy some constraint to avoid the Gregory-Laflamme
instability.
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The Evolution of Perturbations

Assuming a separable perturbation
hαβ(y , xµ) = hαβ(xµ)χ(y), the perturbed effective equations
can be decomposed into two parts:

Separability

e−2ky
{
−k2χ+ 3k∂yχ+ ∂2yχ

}
= −M2χ(y)

(4)�hµν + 2hαβ
(4)Rα β

µ ν −M2hµν = 0

With M = 0, one immediately recovers the dynamical
equation governing gravitational perturbation in general
relativity.
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The Kaluza-Klein Mass Modes

The equation for χ(y) is essentially Bessel’s differential
equation and hence it’s two independent solutions are

Solutions

χ(y) = e−
3
2
ky

[
C1Jν

(
meky

k

)
+ C2Yν

(
meky

k

)]
The boundary conditions imposed are derivatives of χ = 0 at
y = 0 and also on y = d . This leads to the following algebraic
equation

KK Modes

Yν−1(mn/k)Jν−1(zn)− Jν−1(mn/k)Yν−1(zn) = 0

Here mn = {znk}e−kd are Kaluza-Klein mode masses.
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The axial Perturbation equations on the brane

In this case there are two master variables, un,l and vn,l
respectively and their evolution equations read

axial perturbation

Dun,l + f (r)
{
m2

n +
l(l + 1)

r2
− 6

r3

}
un,l + f (r)

m2
n

r3
vn,l = 0

Dvn,l + f (r)
{
m2

n +
l(l + 1)

r2

}
vn,l + 4f (r)un,l = 0

Here, D is the differential operator ∂2t − ∂2r∗ , where r∗ is the
tortoise coordinate defined using f (r) as dr∗ = dr/f (r).
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Quasi-Normal Modes

Table: Imaginary parts of the quasi-normal mode frequencies have been
presented for d/` = 20; 1/` = 6× 107.

m = 0.44, l = 2 m = 0.83, l = 2

Imaginary Imaginary

-0.051 -0.038
-0.071 -0.104
-0.197 -0.168
-0.239 -0.369
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Quasi-Normal Modes for General Relativity

Mode Function for l = 3

Mode Function for l = 2

0 5 10 15 20
- 0.2

- 0.1

0.0

0.1

0.2

0.3

0.4

time H t � GML

u
0

,
2

a
n

d
u

0
,

3
in

L
in

ea
r

S
ca

le

Mode Function for l = 2

Mode Function for l = 3
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Figure: Time evolution of the master mode function un,l(t) associated
with axial gravitational perturbation for two different values of angular
momentum l in the context of general relativity have been depicted.
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Quasi-Normal Modes — I

General Relativity Prediction

Prediction From Brane World

l = 2 , m1 = 0.44
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General Relativity Prediction

Prediction From Brane World

l = 2 , m1 = 0.44
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Figure: Time evolution of the master mode function un,l(t) for general
relativity (n = 0) as well as with the lowest lying Kaluza-Klein mode
mass m1 = 0.44 and l = 2.
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Quasi-Normal Modes — II
V. Cardoso, E. Franzin and P. Pani, PRL 116, 171101 (2016)

General Relativity Prediction

Prediction From Brane World

l = 3, m1 = 0.44
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General Relativity Prediction

Prediction From Brane World

l = 3, m1 = 0.44
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Figure: Time evolution of the master mode function un,l(t) for general
relativity (n = 0) as well as with the lowest lying Kaluza-Klein mode
mass m1 = 0.44 and l=3.
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The Late-Time Behaviour
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Summary

We have discussed how the presence of extra dimensions will
modify the black hole perturbation equations.

Possible modifications of the black hole quasi-normal modes
and distinct features.

Late time behaviour of the black hole perturbations.
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Thank You
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The Late-Time Behaviour

At late times the frequencies can be written in an analytical
manner, such that,

Late Time Behaviour

fn = zne
27−(d/`)(0.1mm/`)Hz
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