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Plan of the talk

 Motivations.

* Review the construction of an effective-one-body (EOB) Hamiltonian
with self-force information without unphysical divergences.

» Comparisons against numerical-relativity (NR) predictions.

* Conclusions.



Motivation

Analytical approximations to solve general relativistic two-body problem:

post-Newtonian (PN): post-Minkowskian (PM): small mass ratio (SMR):
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GM/rc* ~v/c < 1 . GM/rc* < 1 v=MM,/M?* < 1/4

* Why i1s it important to include as much analytical information as possible in the EOB approach?



Motivation

Effective one body

Analytical approximations to solve general relativistic two-body problem: (EOB)

post-Newtonian (PN): post-Minkowskian (PM): small mass ratio (SMR):
A [Talk by J.Vines]
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The effective-one-body formalism

* Real two-body problem solutions are mapped to an effective description of an effective
mass 1n a geodesic around a deformed Schwarzschild (or Kerr) background:

e Hgop — energy map Heff(uvpcb?pT? V)

Ml‘ Heop = M\/1—|—2V(Heff— 1)

D¢ angular momentum

u = M /r inverse orbital separation parameter
* The energy map 1s the central resummation in EOB theory. In the standard (DJS)

gauge, the effective Hamiltonian reads [Buonanno, Damour 1998 & Damour, Jaranowski,
Schifer, 2001,2014]:

1+ pzuﬂgm )22 € Qoss(u,pr, 1))
A7

Information from approximations to Non-geodesic term starting at 3PN. Gauge

two-body problem in GR (so far, SMR choice: does not depend on angular momentum
information is added here)




Interface between EOB and SMR approximation

» Two approaches to include SF information into the EOB potentials:

1) They can be informed by high-PN coefficients inspired by SF quantities: Detweiler
redshift [Kavanagh, Bini, Damour, Geralico et al.|, periastron advance [Le Tiec, Warburton
et al.], self-tides [Dolan, Nagar, Akcay et al.].

2) They can be specified semi-analytically. Example: SMR correction to the A potential

via the Detweiler redshift Az(u) [Le Tiec et al. 2011, Barausse et al. 2011, Akcay et al.
2012]:

1 —14
Alu,v) =1—-2u+v Az(u)\/l—Su—u<1+ = ]
Vv 1—3u
Trouble at the LR!

* Divergence 1s a coordinate singularity due to the use of the DJS gauge [Akcay et al., 2012].

» The EOB binding energy for circular orbits scales as: Ey/ny o< A(u, v)ps o< A(u, v)(1 — 3u) ™"

» The SF binding energy scales as: ESF - oc (1 — 3u)~3/2

» Matching SF and EOB binding energies, divergence leaks into the A4 potential, which
then appears in the EOB Hamiltonian for generic orbits.



Alternative gauge

* In the DJS gauge, we are forced to have a pi term 1n the geodesic part of the Hamiltonian.

* The post-Schwarzschild (PS) gauge, used for PM calculations in [Damour 2016, Damour 2017,
Antonelli et al. 2019] can be used. The Hamiltonian in PS form is:

Heg = \/Hg(uapqﬁvpr) T QPS(U’v HS) V)
} '

lest-body Known @ 4PN and

limit 3PM order
Our strategy:

« Hamiltonian in this gauge depends on the new variable Hg.

« It is regular for generic orbits, but it diverges at the LR for circular orbits:

Pr =0 . 1 —2u
Hg = \/(1 — 2u)[1 —|—piu2 + (1 — 2u)p?] , 1 > Hg™ = 1 — 3u

Po Vu(l — 3u)

« Key idea: push divergence of the EOB SMR Hamiltonian into /{s. In this way, we will
recover the divergence only for circular orbits.




Circular-orbit self-force information 1n the post-Schwarzschild gauge

« We want to link the Detweiler redshift to the EOB effective potential. We split 1t as follows:

o [zo(u) + o ()VT = 3u+ 2(u) In (8 . gz;;l)]

1

Azlu) = (1 — 3u

 This motivates the following ansatz for the EOB SMR effective Hamiltonian:

Heff — \/Hg(uaquap’l“) =+ QSMR(ua HS7 V)
Qsmr (u, Hs,v) = (1 = 2u)v[fo(u)HS + fi(u)HE + fo(u)HS In HE]

* We obtain the circular-orbit limit of the above at linear order in the mass ratio, in terms of the

gauge-independent frequency x: Fpor (x, v).

» The SF binding energy in the same limit, E>F (z, zqur, ), is given by [Le Tiec et al., 2011].

« Matching the two at fixed frequency and imposing analyticity of f~-functions, we get:

2o (u)
(1 —2u)3

1 — 3u zo(u) 1 —4u z1(u) — u

Jo= (1—2u)2|(1—2u)? (1-2u)? = (1 —2u)?

fa =




One way to add non-circular-orbit PN information

* Generic Hamiltonian in the PS gauge are known at 3PN order: PN parameters:

9 23
§§N =3vu’Y + bru® + <3V - 4V2)u2Y2 + (27V — V2>u3Y

A
N 175 417° 7 5\ 4
—V — vV — —V

3 32 2V ¢

* They contain non-circular orbit information which is not captured by the matching of binding
energies. We include extra PN information in a resummed term of the form:

QSMR—SPN — QSMR =+ AQPN , with AQPN — AQextra — AQcoun‘c

Y =(H3 —1)~0O(1/c%)
uw=GM/rc

» The first term is fixed taking the difference ~ AQyira =3v0%Y + <3y _ gy2> w2Y? 4+ 303
between the EOB 3PN Hamiltonian in the 4
PS gauge above and the PN limit of the 23 5\ 3 7 5\ 4
EOB SMR Hamiltonian: (22V 7 )u Y+ (16v - V)Y

* The second term ensures that the above

result does not contribute to the linear-in- 3y 2 4 5
AQ) = v(9u°Y“ +90u”Y + 112u
mass-ratio circular-orbit binding energy. count ( )



Evolutions of EOB Hamiltonians

* For a generic EOB Hamiltonian H (7, py, pr, ), the Hamilton’s equation are:

dp  OH di  A(F) OH

dt 0Py dt v/ D(#) ODr,

dp dp, A(F) OH
Po _ FRR Pre _ (") +]:RRpA

di di — \/D(r) OF Do

EOB

* The equations are augmented with a — Havy
resummed ‘“‘radiation reaction” flux — HEOBPS
from the SEOBNR family. - Hoor o

—rq=3M |

* We do not include NQC'’s or calibration
terms for easier comparisons.

« Unphysical behaviour associated to the
LR divergence in the DJS gauge 1s not
there 1n the PS gauge.
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Phasing studies I: waveform alignment

* We want to assess the usefulness of SMR information. We perform a phasing study [for

R(ho2)

R(hos)

the leading (2,2) mode] between SMR and PN models against NR predictions.

Alignment procedure. Minimise the following function for At and A¢ [Pan et al. 2011]:

=(At, Ag) =

We compare our waveforms to a set of 10 SXS simulations (1/10<g<1) [Boyle et al. 2019].
The alignment window encompasses the same number of GW cycles for each simulation
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0180 1 28.18 5649 7044 9517
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Phasing studies II: PN vs SMR

* Post-alignment results:
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 Top panel: real part of the inspiral waveform for SMR models against the NR prediction.
* Bottom panel: accumulated de-phasing of SMR and PN models against NR, up to NR merger.
* Good agreement of SMR models up to few (NR) orbits to merger.



Phasing studies III: A¢ vs q
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We can look at the accumulated de-phasing few orbits before merger, and make comparisons
across mass ratios.

SMR-3PN model improves the modelling of the inspiral from q~1/3 (when compared to the
best-performing EOB-PN model).

 Results are robust against changes in the number of orbits before merger at which de-phasing
1s calculated and against changes 1n the time-alignment window.



Conclusions

lake-home points:
* We have a proof-of-principle EOBSMR model for non-spinning systems in a quasi-circular
inspiraling orbit.

 SMR 1nformation shows great promise to improve the modelling of systems with q<1/3
(when inserted in the EOB formalism).

 Self-force program 1s very useful for LIGO and 3G studies, not just for LISA.

Outstanding issues:

* The non-geodesic function of the Hamiltonian in the PS gauge is not fully constrained. We
need to include information from eccentric orbits to constrain i1ts non-circular orbit sector.

[Remarks by Barry and Leor on SF scattering calculations]

 To be used, the model must be extended to include spins and merger and ringdown must be
attached. Resulting inspiral-merger-ringdown models will need to be sped up.



Thank you!



Extra slides



Energetics studies: E vs )
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The binding energy E vs frequency () curve is a gauge-invariant relation.

* For quasi-circular orbits, F/(€2) encapsulates the conservative dynamics. It can be used to
compare analytical results to numerical predictions.

they are comparable to the 3PN EOB Hamiltonian in the DJS gauge.

SMR and SMR-3PN EOB Hamiltonians perform well against NR predictions and



Energetics comparisons: £ vs /
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* The binding energy £ vs angular momentum / curve 1s a gauge-invariant relation.

 For quasi-circular orbits, £(/) encapsulates the conservative dynamics and i1t can be used to
compare analytical results to numerical predictions.

 SMR and SMR-3PN EOB Hamiltonians perform well against NR predictions and
they are comparable to the 3PN EOB Hamiltonian in the DJS gauge.



Residual eccentricity in comparable-mass systems

* In principle, an H §’ power 1n the Hamiltonian ansatz is enough to capture the global
divergence in the redshift.

Az(u) : zo(u) + 21 (u)V1 — 3u + 2 (u) In (8 - gz;jﬂ

(, Scales as HZ

e The SMR Hamiltonian with H g contains bumps near the LR which result, for comparable-

mass systems, in seemingly eccentric behaviour:
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Residual eccentricity in comparable-mass systems

* In principle, an H S power 1n the Hamiltonian ansatz is enough to capture the global
divergence in the redshift.

Az(u) : zo(u) + 21 (u)V1 — 3u + 2 (u) In (8 - gz;jﬂ

(, Scales as HZ
* With . g , the only factor changing in the Hamiltonian 1s the following;:

| Z()(u) 1 —4u ! (U) — U o 29 (U)
o (T —2up (1-2@3] =g J2= A gy
N

We introduce this factor

» Both HZ and HS are valid solutions, because the O-function is not fixed for generic orbits.

» We choose Hg because it is the simplest modification to the H ansatz that:

1) maintains the Hamiltonian real after the Schwarzschild light ring.
2) smooths out the otherwise-present bumps in the EOB Hamiltonian near the LR.




