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Plan of the talk

• Motivations.

• Review the construction of an effective-one-body (EOB) Hamiltonian 
with self-force information without unphysical divergences.

• Comparisons against numerical-relativity (NR) predictions.

• Conclusions.



Motivation

post-Newtonian (PN): post-Minkowskian (PM): small mass ratio (SMR):

GM/rc2 ⇠ v/c ⌧ 1 GM/rc2 ⌧ 1

Effective one body 
(EOB)Analytical approximations to solve general relativistic two-body problem:

⌫ = M1M2/M
2 ⌧ 1/4

q = M1/M2 ⌧ 1

[Talk by J.Vines]

• Why is it important to include as much analytical information as possible in the EOB approach?
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Analytical approximations to solve general relativistic two-body problem:

⌫ = M1M2/M
2 ⌧ 1/4

q = M1/M2 ⌧ 1

[Talk by J.Vines]

A concrete example:

1/4 . q = 1
q . 10�5

• SEOBNRv4 model [Bohè et al., 2016] is 
based on the PN approximation and 
calibrated to many NR simulations at high 
q’s (                  ) and solutions to the 
Teukolsky equations at small q’s  (              ) 
[Barausse et al. 2012, Taracchini et al., 2014].
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[Bohè et al. (2016)]

• Intermediate region (                          ): few NR 
simulations, we need analytical improvements to 
avoid relying on interpolations.
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q = M1/M2 ⌧ 1

[Talk by J.Vines]

A concrete example:

1/4 . q = 1
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based on the PN approximation and 
calibrated to many NR simulations at high 
q’s (                  ) and solutions to the 
Teukolsky equations at small q’s  (              ) 
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The effective-one-body formalism

He↵

µ
=

q
A(u, ⌫)[1 + p2�u

2 +A(u, ⌫)D(u, ⌫)�1p2r +QDJS(u, pr, ⌫)]

Non-geodesic term starting at 3PN. Gauge 
choice: does not depend on angular momentum

angular momentum
radial momentum

u = M/r inverse orbital separation
pr

p�   

• Real two-body problem solutions are mapped to an effective description of an effective 
mass in a geodesic around a deformed Schwarzschild (or Kerr) background:

µ

HEOB energy map

M1

M2

HEOB = M
p
1 + 2⌫(He↵ � 1)

He↵(u, p�, pr, ⌫)

Deformation 
parameter

Information from approximations to 
two-body problem in GR (so far, SMR 

information is added here)

• The energy map is the central resummation in EOB theory. In the standard (DJS) 
gauge, the effective Hamiltonian reads [Buonanno, Damour 1998 & Damour, Jaranowski, 
Schäfer, 2001,2014]:



Interface between EOB and SMR approximation

EEOB
bind / A(u, ⌫)p2� / A(u, ⌫)(1� 3u)�1

ESF
bind / (1� 3u)�3/2

A(u, ⌫) = 1� 2u+ ⌫


�z(u)

p
1� 3u� u

✓
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1� 3u

◆�

�z(u)

• Two approaches to include SF information into the EOB potentials: 

1) They can be informed by high-PN coefficients inspired by SF quantities: Detweiler 
redshift [Kavanagh, Bini, Damour, Geralico et al.], periastron advance [Le Tiec, Warburton 
et al.], self-tides [Dolan, Nagar, Akcay et al.]. 

2) They can be specified semi-analytically. Example: SMR correction to the A potential 
via the Detweiler redshift            [Le Tiec et al. 2011, Barausse et al. 2011, Akcay et al. 
2012]:

• Divergence is a coordinate singularity due to the use of the DJS gauge [Akcay et al., 2012].  

• The EOB binding energy for circular orbits scales as:

• The SF binding energy scales as:

• Matching SF and EOB binding energies, divergence leaks into the A potential, which 
then appears in the EOB Hamiltonian for generic orbits.

Trouble at the LR!



Alternative gauge

Test-body 
limit

Known @ 4PN  and 
3PM order

p2�

Our strategy:

• Hamiltonian in this gauge depends on the new variable       .

• It is regular for generic orbits, but it diverges at the LR for circular orbits:

• Key idea: push divergence of the EOB SMR Hamiltonian into      . In this way, we will 
recover the divergence only for circular orbits.

• In the DJS gauge, we are forced to have a       term in the geodesic part of the Hamiltonian.

• The post-Schwarzschild (PS) gauge, used for PM calculations in [Damour 2016, Damour 2017, 
Antonelli et al. 2019] can be used. The Hamiltonian in PS form is:

HS

HS

He↵ =
q

H2
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q

(1� 2u)[1 + p2�u
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S =
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1� 3upcirc� =

1p
u(1� 3u)

pr = 0



Circular-orbit self-force information in the post-Schwarzschild gauge

E

EOB
bind (x, ⌫)

E

SF
bind(x, zSMR, ⌫)

   

• We want to link the Detweiler redshift to the EOB effective potential. We split it as follows:

• This motivates the following ansatz for the EOB SMR effective Hamiltonian:

• We obtain the circular-orbit limit of the above at linear order in the mass ratio, in terms of the 
gauge-independent frequency x:                   .

• The SF binding energy in the same limit,                              , is given by [Le Tiec et al., 2011].      

• Matching the two at fixed frequency and imposing analyticity of f-functions, we get:   
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One way to add non-circular-orbit PN information

• Generic Hamiltonian in the PS gauge are known at 3PN order:

• They contain non-circular orbit information which is not captured by the matching of binding 
energies. We include extra PN information in a resummed term of the form:

• The first term is fixed taking the difference 
between the EOB 3PN Hamiltonian in the 
PS gauge above and the PN limit of the 
EOB SMR Hamiltonian:

• The second term ensures that the above 
result does not contribute to the linear-in-
mass-ratio circular-orbit binding energy.
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Evolutions of EOB Hamiltonians
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PRELIMINARY

• For a generic EOB Hamiltonian                       , the Hamilton’s equation are:

• The equations are augmented with a 
resummed  “radiation reaction” flux 
from the SEOBNR family.

• We do not include NQC’s or calibration 
terms for easier comparisons.

• Unphysical behaviour associated to the 
LR divergence in the DJS gauge is not 
there in the PS gauge.



Phasing studies I: waveform alignment

⌅(�t,��) =

Z talig2

talig1

[�NR(t)� �EOB(t+�t)���]2dt
hNR
22 = ANR(t) exp

i�NR(t)

hEOB
22 = AEOB(t+�t) expi�EOB(t+�t)+��

���t

• We want to assess the usefulness of SMR information. We perform a phasing study [for 
the leading (2,2) mode] between SMR and PN models against NR predictions.

• Alignment procedure. Minimise the following function for       and        [Pan et al. 2011]:

• We compare our waveforms to a set of 10 SXS simulations (1/10<q<1) [Boyle et al. 2019]. 
The alignment window encompasses the same number of GW cycles for each simulation 
(3 orbits, in red)
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Phasing studies II: PN vs SMR
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• Top panel: real part of the inspiral waveform for SMR models against the NR prediction.

• Bottom panel: accumulated de-phasing of SMR and PN models against NR, up to NR merger.

• Good agreement of SMR models up to few (NR) orbits to merger.

PRELIMINARY

• Post-alignment results:

-1



Phasing studies III:        

Stronger-field regime

�� vs q
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PRELIMINARY PRELIMINARY

Stronger-field regime

• SMR-3PN model improves the modelling of the inspiral from q~1/3 (when compared to the 
best-performing EOB-PN model).

• We can look at the accumulated de-phasing few orbits before merger, and make comparisons 
across mass ratios.

• Results are robust against changes in the number of orbits before merger at which de-phasing 
is calculated and against changes in the time-alignment window.



Conclusions

Take-home points:

Outstanding issues:

• We have a proof-of-principle EOBSMR model for non-spinning systems in a quasi-circular 
inspiraling orbit.

• Self-force program is very useful for LIGO and 3G studies, not just for LISA.

• SMR information shows great promise to improve the modelling of systems with q<1/3 
(when inserted in the EOB formalism).

• The non-geodesic function of the Hamiltonian in the PS gauge is not fully constrained. We 
need to include information from eccentric orbits to constrain its non-circular orbit sector.

• To be used, the model must be extended to include spins and merger and ringdown must be 
attached. Resulting inspiral-merger-ringdown models will need to be sped up.

[Remarks by Barry and Leor on SF scattering calculations]



Thank you!



Extra slides
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• For quasi-circular orbits,           encapsulates the conservative dynamics. It can be used to 
compare analytical results to numerical predictions.

• The binding energy E vs frequency      curve is a gauge-invariant relation.

• SMR and SMR-3PN EOB Hamiltonians perform well against NR predictions and 
they are comparable to the 3PN EOB Hamiltonian in the DJS gauge. 

Merger Merger

⌦

E(⌦)

Energetics studies: E vs ⌦



Energetics comparisons: E vs l
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Merger Merger

• For quasi-circular orbits, E(l) encapsulates the conservative dynamics and it can be used to 
compare analytical results to numerical predictions.

• The binding energy E vs angular momentum l curve is a gauge-invariant relation.

• SMR and SMR-3PN EOB Hamiltonians perform well against NR predictions and 
they are comparable to the 3PN EOB Hamiltonian in the DJS gauge.



Residual eccentricity in comparable-mass systems

• The SMR Hamiltonian with       contains bumps near the LR which result, for comparable-
mass systems, in seemingly eccentric behaviour:

q=1

SMR 
Hamiltonian

Motion of 
effective mass

q=10

• In principle, an       power in the Hamiltonian ansatz is enough to capture the global 
divergence in the redshift.
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Scales as
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Scales as
• With      , the only factor changing in the Hamiltonian is the following:
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We introduce this factor

• Both       and       are valid solutions, because the Q-function is not fixed for generic orbits.
• We choose       because it is the simplest modification to the        ansatz that: 

   1) maintains the Hamiltonian real after the Schwarzschild light ring. 
   2) smooths out the otherwise-present bumps in the EOB Hamiltonian near the LR.

Residual eccentricity in comparable-mass systems
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