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Outline

e What’s a kludge?

e An inventory of EMRI kludges
o Analytic kludge (AK)
o Numerical kludge (NK)
o Augmented analytic kludge (AAK)

e Kludges in LISA preparatory science



What’s a kludge?

e Some particularly apt dictionary definitions:

‘Any construction or practice, typically
crude yet effective, designed to solve
a problem temporarily or expediently”

L. Preiss
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a problem

“An ill-assorted collection of
poorly matching parts, forming
a distressing whole”

L. Preiss



What’s a kludge?

e Some particularly apt dictionary definitions:

“Any construction or practice, typically
, designed to solve

2

a problem

‘An ill-assorted collection of
poorly matching parts, forming

2

‘A badly written or makeshift
piece of software”

L. Preiss



What’s an EMRI kludge model?

if Efficiency-oriented
o Feasible for bulk use in data analysis algorithms

and End-to-end

o Source parameters — trajectory — orbit — waveform — detector response

and Extensive
o Describes generic Kerr orbits (intrinsic) & observer dependence (extrinsic)

and not Fully relativistic
o At least one component uses flat-space approximation

then It’s a kludge!



What’s an EMRI kludge model?

e if Efficiency-oriented
o Feasible for bulk use in data analysis algorithms

e and End-to-end
o  Source parameters — trajectory — orbit — waveform — detector response

e and Extensive
o Describes generic Kerr orbits (intrinsic) & observer dependence (extrinsic)

e and not Fully relativistic
o At least one component uses flat-space approximation

e then It’s a kludge!

e Disclaimer: This is my personal, completely non-standard definition
o  Butreally the only one you should use



While we’re defining terms...

e Waveform model:
o Not efficiency-oriented + fully relativistic

e Template model:
o Efficiency-oriented + end-to-end + extensive




While we’re defining terms...

Surrogate model:

(@)

(©)
(@)
O

Efficiency-oriented + end-to-end + extensive + fully relativistic
i.e., a surrogate is a template model that is not a kludge

Can (probably will) be phenomenological & not self-consistent
Nomenclature is compatible with the NR ROM surrogates

Approximant:

(@)

LIGO-speak for a surrogate




Analytic kludge (AK)

e Barack & Cutler, 2004 7
e PN inspiral trajectory S
o Mixed-order fluxes for (p,e) = th)
o Assume constant inclination GK
e Flat-space orbital evolution A
o Instantaneous Keplerian ellipses D)
o  Add PN precession

Barack & Cutler (2004)



Analytic kludge (AK)

e Barack & Cutler, 2004 7
e PN inspiral trajectory S
o Mixed-order fluxes for (p,e) . X ZZt)
o Assume constant inclination GK
e Flat-space orbital evolution A
o Instantaneous Keplerian ellipses D)
o Add PN precession m N y
e Flat-space waveform generation \;2.
o Peters-Mathews decomposition - Yo |
o Hence quadrupolar -

e Time-domain detector response

o Long-wavelength approximation
o Extended to t/f rigid-equal-arm TDIs (Babak)

Barack & Cutler (2004)



Analytic kludge (AK)

e Strengths: 107"

o Fast to generate at low eccentricity (< 0.5) Z(“fsfé?ilf;

o Fast to generate for long signals 3&28;110%?);&277
o  Constructed from harmonic decomposition

v(LSO-10yrs)=0.23 mHz
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Analytic kludge (AK)

e Strengths: 07"
o Fast to generate at low eccentricity (< 0.5) :{“L”;é?iz‘.’i
e(LSO-10yrs)=0.77
o Fast to generate for long signals ; W(LSO)-1.85 mHz

v(LSO-10yrs)=0.23 mHz

o  Constructed from harmonic decomposition

e \Weaknesses:
o Unphysical instantaneous frequencies
o Limited performance at high eccentricity

f (Hz)

Barack & Cutler (2004)




Numerical kludge (NK)

e Babak et al., 2007

e PN inspiral trajectory
o  Mixed-order fluxes for (p,e,i)
o Fit to adiabatic trajectories
e Curved-space orbital evolution
o Instantaneous Kerr geodesics
o  Precession naturally included

Berry et al. (2019)




Numerical kludge (NK)

Babak et al., 2007

PN inspiral trajectory
o  Mixed-order fluxes for (p,e,i)
o Fit to adiabatic trajectories
Curved-space orbital evolution
o Instantaneous Kerr geodesics
o Precession naturally included
Flat-space waveform generation
o Associate curved & flat coordinates
o  Several multipolar prescriptions

Time-domain detector response

o Only long-wavelength approximation
o Needs LISA simulator for accurate response

Berry et al. (2019)




Numerical kludge (NK)

Strengths:

O

@)

@)

Good agreement with Teukolsky waveforms
Much faster than relativistic models
Easy to incorporate better trajectories

| L
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Babak et al. (2007)



Numerical kludge (NK)

e Strengths:

o  Good agreement with Teukolsky waveforms I
o Much faster than relativistic models i

o Easy to incorporate better trajectories e
e Weaknesses: =
o Multipole formalism is inefficient 3
o Weak-field approximation is inaccurate ,
at high eccentricity (see talk by Osburn) I L .

o No easy harmonic decomposition

L | L 1 L | L
0 5000 10000 15000 20000

Babak et al. (2007)




Augmented analytic kludge (AAK)

Chua & Gair, 2015

PN inspiral trajectory
o 3PN O(e”6) fluxes for (p,e)
o Assume constant inclination
o Localfit to NK trajectories
Flat-space orbital evolution
o Map to Kerr instantaneous frequencies
o  Otherwise same as AK

hy

(1, M, a, e, ty, po) = (10' My, 10°M, 0.8M, 0.5, 1/6, 15M)

AN

Chua & Gair (2015)




Augmented analytic kludge (AAK)

e Chua & Gair, 2015
e PN inspiral trajectory

(@)

(@)

(@)

3PN O(e”6) fluxes for (p,e)
Assume constant inclination
Local fit to NK trajectories

e Flat-space orbital evolution

(@)

(©)

Map to Kerr instantaneous frequencies
Otherwise same as AK

e Flat-space waveform generation

o

Same as AK

e Time-domain detector response

(@]

Same as AK

hy

(1, M, a, e, ty, po) = (10' My, 10°M, 0.8M, 0.5, 1/6, 15M)

i
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Chua & Gair (2015)




Augmented analytic kludge (AAK)

Strengths:
o Same as AK
o Good agreement with NK waveforms
o Improved implementation
o  Actually being maintained by postdoc
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(1, M, a, eq, 1, po) = (10! Mg, 10°M, 0.5M, 0.1, n/6, 8.25M)
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Chua, Moore & Gair (2017)




Augmented analytic kludge (AAK)

e Strengths:
o Same as AK
o Good agreement with NK waveforms
o Improved implementation
o Actually being maintained by postdoc

o \Weaknesses:

o Limited performance at high eccentricity
o Frequency map ill-defined at plunge

10~19

(1. M, a, g, 1o, po) = (10' M, 10°M,, 0.5M, 0.1, 7/6, 8.25M)
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Chua, Moore & Gair (2017)




EMRI Kludge Suite

e Software suite with all 3 kludges & common interface
o Latest version: 0.4.2
o NK not being maintained
o AK only being maintained until end of LDC-1




EMRI Kludge Suite

e Installation
o  Clone from: github.com/alvincjk/EMRI_Kludge_Suite
o  Written in C/C++, needs GSL & FFTW libraries
o  Python wrapper available for some executables



EMRI Kludge Suite

e Usage
o Executables in ./bin: Waveforms (all models), TDIs (AK/AAK), phases (AAK)
o Template files in ./examples: Source/waveform parameters, model settings
o Import Python module AAKwrapper, example usage in AAKdemo.py
o  Caveat utilitor: Limited domain validation & error handling



EMRI Kludge Suite

Model

AK

AAK

NK

Trajectory

- Mixed-order PN
fluxes

- 3PN O(e”"6) fluxes
- Locally fitted to NK
trajectories

- Mixed-order PN
fluxes

- Fitted to adiabatic
trajectories

Orbit

- Evolving Keplerian
ellipses

- Evolving Keplerian
ellipses

- Instantaneous
frequencies mapped
to Kerr

- Evolving Kerr
geodesics

Waveform/response

- Peters-Mathews
approximation to quadrupole
- Rigid-equal-arm
approximation (TDIs)

- Peters-Mathews
approximation to quadrupole
- Rigid-equal-arm
approximation (TDIs)

- Quadrupole
- Long-wavelength
approximation (h_L,II)

Accuracy

- Instantaneous
frequencies too high
- Schwarzschild
plunge handling
- Qualitative use only

- Phase-accurate
w.rt. NK waveforms,
for 2-6 months

- Approximate Kerr
plunge handling

- Phase-accurate w.rt.

adiabatic waveforms,
down to 2-3 r_ISCO

- Kerr plunge handling

Speed

- Fast, but less speedup

over NK for shorter
waveforms or more
eccentric orbits

- Same as AK, but
slightly faster due to
streamlining

- Order of magnitude
slower than AK/AAK
on average



Kludges in LISA preparatory science

e Data analysis

o  Synthetic data sets

m  MLDCs, 2006-2011 (using AK); LDCs, 2018-present (transitioning from AK to AAK)
o Search algorithms

m Babak, Gair & Porter, 2009 + Cornish, 2011 + Wang, Shang & Babak, 2012 +

several others (all using lossy, kludge-informed, harmonic decomposition techniques)

o Inference algorithms

m Alietal, 2012 (short data segments); not much else (even kludges are still too slow)



Kludges in LISA preparatory science

e Data analysis
o  Synthetic data sets
m  MLDCs, 2006-2011 (using AK); LDCs, 2018-present (transitioning from AK to AAK)
o  Search algorithms
m Babak, Gair & Porter, 2009 + Cornish, 2011 + Wang, Shang & Babak, 2012 +
several others (all using lossy, kludge-informed, harmonic decomposition techniques)
o Inference algorithms
m Alietal, 2012 (short data segments); not much else (even kludges are still too slow)
o Degeneracies & confusion
m Chua & Cutler, in prep. (mapping out the likelihood surface); Barack & Cutler, 2004 +
Karnesis, Chua & Babak, in prep. (unresolvable EMRI background)
o Systematics (theoretical errors)
m Huerta & Gair, 2009 (effect of conservative corrections); Berry et al., 2016
(effect of resonances); Chua et al., in prep. (error marginalization)



Kludges in LISA preparatory science /

e Mission performance
o Detection rates
m Gair et al, 2004 (using AK); Babak et al., 2017 + several other reports/proposals
(still using AK); Chua, Moore & Gair, 2017 (using AAK)
o Parameter estimation precision (statistical errors)
m Barack & Cutler, 2004 + Babak et al., 2017 + several other reports/proposals (all using AK)



Kludges in LISA preparatory science

® Science applications
o Fundamental physics (tests of gravity)
m Glampedakis & Babak, 2006 + Barack & Cutler, 2007 + Chua et al., 2018 (generic Kerr
deviations); Canizares, Gair & Sopuerta, 2012 (dynamical Chern-Simons); possibly others
o Astrophysics & cosmology
m Sesana et al, 2008 (WD EMRIs); Han & Chen, 2019 (b-EMRIs);
surprisingly not much else (heuristic analysis, or just use cited rates/precision)



Outline (redux)

e What's a kludge?

e An inventory of EMRI kludges
o Analytic kludge (AK)
o Numerical kludge (NK)
o Augmented analytic kludge (AAK)
e Kludges in LISA preparatory science
The EMRI data analysis problem

Paving the way to surrogates
o  Existing pieces
o Compression & interpolation
o Strategies & coordination




Key features of LISA data analysis

e Problem O: Instrument/noise model
o Complicated dynamical orbits
o Complicated instrument response (TDIs)
o Non-stationary noise
o Gaps & glitches

N. Douillet



Key features of LISA data analysis

e Problem O: Instrument/noise model
o  Complicated dynamical orbits
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Complicated instrument response (TDIs)
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o  Non-stationary noise
o Gaps & glitches

Y EMRI, SNR=41

e Problem 1: Signal confusion

o Many signals overlap in time/frequency:
Galactic binaries + SMBH mergers + EMRIs
Cannot just subtract then move on
Global-solution algorithm is required
Not practical to do fully simultaneous fit
Separate source pipelines communicating
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Key features of LISA data analysis

Problem 2: Global search

O

Parameter space can be massive:

Large dimensionality & information volume
Credible regions can be very localized
Stochastic search algorithms are required
Search is hierarchical & needs multiple passes
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Key features of LISA data analysis

e Problem 2: Global search

O

O

O

O

Parameter space can be massive:

Large dimensionality & information volume
Credible regions can be very localized
Stochastic search algorithms are required
Search is hierarchical & needs multiple passes

e Problem 3: Modeling accuracy

(@)

(@)
(@)
@)

Bias when theoretical error > statistical error
Only for strong-field, high-SNR sources
Most interesting, but most difficult to model
Need to understand errors for waveforms,
minimize loss of accuracy for templates
Could be addressed from data analysis end

An/ny

0.45

0.40 +

0.35

0.30 |

0.25 |

0.20

0.15

0.10 |

0.05

0.00

el
~— N
»
1044107 M,
(M,/M, = 1000)
..
S
105+1o770%\1 3 ‘
(MM, = 100) X
- <\ ol
10410 M, 1044108 M;\ N \
(M/M; =10)  (v1,/M, = 100) N\ =4
e 105100 M, S W)
B (Ma/M, = 10)
Vo 0,=46°, ¢s=153"\\ o
/ 8=152°, §=228° 1054105 M.
6,91°, ,=329° b )
\\ e=1?))3° $=111° / Mo/My =) 10%+10° M, |
< X P /’/ (Mo/My = 1)
) o . . L . .
-7 -6 -5 -4 -3 -2 - 0 1

Alog(M,) x 102
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The EMRI data analysis problem

e Galactic binaries
o  Confusion: Severe (resolvable + background)
o Search: Low SNR & many signals to resolve, but templates are inexpensive
o Modeling: No problem

®
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The EMRI data analysis problem

e (Galactic binaries
o  Confusion: Severe (resolvable + background)
o Search: Low SNR & many signals to resolve, but templates are inexpensive
o Modeling: No problem
e SMBH mergers
o  Confusion: None

o Search: Expensive templates & localized, but high SNR & fewer signals to find
o Modeling: Difficult (NR)
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The EMRI data analysis problem

e (Galactic binaries
o  Confusion: Severe (resolvable + background)
o Search: Low SNR & many signals to resolve, but templates are inexpensive
o Modeling: No problem

e SMBH mergers
o  Confusion: None
o Search: Expensive templates & localized, but high SNR & fewer signals to find
o Modeling: Difficult (NR)
e EMRIs
o Confusion: Maybe (uncertain event rates, possibly severe degeneracies)

o Search: Expensive templates, highly localized, moderate SNR, possibly many signals
o Modeling: Difficult (SF)
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Will kludges be good enough?

e Interms of speed
o Template cost: >10? s ()
Time samples: > 107 (4 years x 0.1 Hz)
Inner-product calls: 10°-103° (1)
Barely OK for inference
Prohibitive for search (without sacrificing accuracy)

O O O O




Will kludges be good enough?

e Interms of accuracy

o Assume overlaps of 0.97 with true signals

o Barely OK for search: Lose up to half of signals
(Chua, Moore & Gair, 2017)

o Nowhere near good enough for inference

ORNL




Will kludges be good enough?

ORNL

e Need for surrogates & algorithms tailored to EMRI problem
o Let’s leave kludges & traditional data analysis approaches behind



Surrogates: Existing pieces

e Trajectory & orbit

(@]

o

(@]

PN flux-based (see talks by Isoyama, Munna)
Teukolsky flux-based (see talk by Hughes)
SF-based (van de Meent & Warburton, 2018;
see also talk by Osburn)

—— Self-force trajectory: (p, €)
——— NIT trajectory: (p, &)

-------- Inverse NIT trajectory: (p - n Y, & - n Y{")

s 9 TR R

van de Meent & Warburton (2018)



Surrogates: Existing pieces

e Trajectory & orbit

O

O

(@)

PN flux-based (see talks by Isoyama, Munna)
Teukolsky flux-based (see talk by Hughes)
SF-based (van de Meent & Warburton, 2018;
see also talk by Osburn)

e Waveform

o

@]

Teukolsky snapshots
Adiabatic (see talks by Hughes, Isoyama)

® Response

o

Approximate TDI (Babak; Marsat & Baker, 2018)
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Surrogates: Compression & interpolation

e ROM surrogates (Field et al., 2014) h(0) = Z a;(0)e; = a(0)

Construct reduced basis for signal space

Only valid over predefined parameter domain
Resultant template model is fast & accurate

May be viable for EMRIs with smart representation

O O O O



Surrogates: Compression & interpolation

e ROM surrogates (Field et al., 2014) . Accuracy Atest, Atrain
o  Construct reduced basis for signal space
o  Only valid over predefined parameter domain 32 1.
o  Resultant template model is fast & accurate ek '.::. .
o May be viable for EMRIs with smart representation £

e ROMAN (Chua, Galley & Vallisneri, 2019) £ ol . o
o Reduced-order modeling with artificial neurons § _‘ Count | Ajesy) o7
o Same basis & domain as ROM surrogates f>,~0_10 i{:":. oo 06
o Comparable speed & accuracy ,.,:‘“;.' 400 E .
o  More general, connects directly to data analysis e 0 'l
o Shows utility of neural-network interpolation oo z . - 0’9230’94 - 0.498 -

(dimensionality, derivatives, etc.) Chirp mass M, [GM/c]

Chua, Galley & Vallisneri (2019)



Surrogates: Strategies & coordination

e Work in time-frequency domain
o Lossless representation: STFT, wavelets, etc.
Admits native generation & data analysis

o Best suited to nature of EMRIs & LISA h(a, b) _ %/dt h(t)lp <t — b)
© a

Can deal with non-stationarity & gaps a

h(t,w) = /dt h(t)W (t — 7)e™ ™!




Surrogates: Strategies & coordination

Work in time-frequency domain

O O O O

Lossless representation: STFT, wavelets, etc.
Admits native generation & data analysis
Best suited to nature of EMRIs & LISA

Can deal with non-stationarity & gaps

Compress & interpolate everything

o

Incorporate parallelization from the start

(@]

e.g., map geodesics to Teukolsky amplitudes

e.g., hative GPU implementations
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0.0006 -
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0.0000 A

—0.0002 A

—0.0004

——— Network output
True waveform

10000

20000

30000 40000

Chua et al. (in prep.)




Surrogates: Strategies & coordination

Work in time-frequency domain

O O O O

Lossless representation: STFT, wavelets, etc.
Admits native generation & data analysis
Best suited to nature of EMRIs & LISA

Can deal with non-stationarity & gaps

Compress & interpolate everything

(@)

e.g., map geodesics to Teukolsky amplitudes

Incorporate parallelization from the start

(@)

e.g., native GPU implementations

|dentify & add important missing pieces

o

o

@]

Transient resonances
Tidal resonances? (see talk by Bonga)
Secondary spin? (see talks by Witzany, Kavanagh)

-4
-6
0.0 0.5 1.0 1.5 2.0
t/yr

Berry et al. (2016)




Surrogates: Strategies & coordination

e L|LSG WP 1.8.3: Efficient EMRI models
o Kludges & related tools for LDCs

Fast LISA response for EMRIs

Reduced-representation templates

Fast transient resonance models

Fast SF trajectories

o Modern computational techniques

e Also WPs 1.2.1 (Pound), 1.2.2 (Warburton), 1.2.3 (Brito)

O O O O

| WANT YOU

(FOR LSG WP 1.8.3)




Surrogates: Strategies & coordination

e Calling for expressions of interest/commitment
o No need to be full or even associate LISA member

o More at: tinyurl.com/emri-templates m WAHT Y@U

(FOR LSG WP 1.8.3)




Summary

e EMRI kludge models are efficiency-oriented,
end-to-end, extensive, but not fully relativistic

e Kludges have fulfilled their purpose of
scoping out LISA data analysis issues;
they will still be relevant in the near future

e We now have some pieces to construct
surrogate models that are more
directly informed by perturbation theory

e These will be tailored to LISA data analysis
requirements; modern computational
techniques will improve both speed & accuracy
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