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Basic Goals

Aims to develop time domain evolution code for gravitational
self-force using the effective source approach

Builds on Peter Diener’s scalar evolution code

Calculated in the Lorenz gauge

Uses tortoise coordinates around the source

Transitions to hyperboloidal coordinates in inner and outer regions
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Derivation of Evolution equations

Use first order perturbation equations for the trace-reversed metric in
the Lorenz gauge:

�h̄αβ + 2Rµα
ν
β h̄µν = −16πTαβ

Decompose results into multipole harmonics:

�2d
sc h̄

(i)`m + M
(i)`
(j) h̄(j)`m = − 4πrf

µa(i)`
πT (i)`m
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t − ∂2
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+
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)
Expressions for the coupling matrix M

(i)`
(j) were originally derived by Barack

& Lousto [1].
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Constraint Damping

Gundlach et al [2] provide a methodology to introduce constraint damping
to the evolution equations. This damping requires adding term to
evolution equations of the form

−κ(tαZβ + tβZα),

where κ is a positive constant, tα is a future-directed time-like vector field,
and Zα = h̄αβ

;β is the Lorenz gauge condition.

We adopt the specific choice of constraint damping given in Barack &
Lousto [1]. We revisit the constraint damping problem later, as this choice
is incompatible with hyperboloidal slicing as we have implemented it.
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Hyperboloidal Slicing

For the hyperboloidal layer from the tortoise coordinate region to Scri+,
we construct the layer as done by Bernuzzi et al [3]. The following
relations define the coordinate transformation {t, r} → {τ, ρ} for the outer
hyperboloidal layer.

Invariant Killing vector fields: ∂t = ∂τ → τ = t − h(r∗)

Invariant outgoing null rays: t − r∗ = τ − ρ→ dρ
dr∗

= 1− H(ρ)

Compactifying coordinates:
r∗ = ρ

Ω(ρ)
dh
dr∗
≡ H(ρ) = 1− Ω2

Ω−ρΩ′

In this compactification, Ω(ρ) is defined such that
Ω(S+) = 0⇒ r∗(S

+) =∞, where S+ is some positive real number.
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Outer Limit

For the numerical implementation, the evolution equation is rearranged so
that the second t or τ derivative is on the LHS, and everything else is
moved to the RHS. In the outer layer, this becomes

h̄(i)`m
,ττ =

1− H

1 + H
h̄(i)`m
,ρρ − 2H

1 + H
h̄(i)`m
,τρ − H ′

1 + H
h̄(i)`m
,τ

− H ′

1 + H
h̄(i)`m
,ρ − 4

1− H2
M

(i)`
(j) h̄(j)`m − 4

1− H2
V (ρ)h̄(i)`m

In the limit ρ→ S+, H → 1, so the limit must be considered carefully for
terms with a factor of 1

1−H . Thankfully, all terms are finite in the limit.
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Hyperboloidal Slicing

For the hyperboloidal layer from the tortoise coordinate region to the
horizon, we perform a similar construction as before. The primary
difference is that we preserve the ingoing null rays instead of the outgoing
rays. This amounts to changing the equation

t − r∗ = τ − ρ

to
t + r∗ = τ + ρ

In this compactification, Ω(ρ) is defined such that
Ω(S−) = 0⇒ r∗(S

−) = −∞, where S− is some negative real number.
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Inner Limit

Looking at the RHS for the inner layer, we have

h̄(i)`m
,ττ =

1 + H

1− H
h̄(i)`m
,ρρ − 2H

1− H
h̄(i)`m
,τρ − H ′

1− H
h̄(i)`m
,τ

+
H ′

1− H
h̄(i)`m
,ρ − 4

1− H2
M

(i)`
(j) h̄(j)`m − 4

1− H2
V (ρ)h̄(i)`m

In the limit ρ→ S−, H → −1, so the limit must be considered carefully
for terms with a factor of 1

1+H . Unfortunately, in this case there are terms

in the coupling matrix M
(i)`
(j) which are infinite in the coupling equations

for i = 2, 4, 8.
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Tensor Spherical Harmonic Basis

For this work, we use the tensor spherical harmonics from Barack &
Sago [4]. This basis introduces a factor of f in the i = 3 tensor spherical
harmonic from [1]. Examining how this affects the coupling matrix in the
hyperboloidal layer reveals that this change resolved infinite coefficients
which would be present if we used the original basis [1].

We examined whether a similar procedure could improve the behavior of
the other coefficients by introducing a factor of f ni to the other tensor
spherical harmonics, where ni are real numbers. Recalculating the coupling
matrix revealed that no combination of factors of this form would resolve
the issue.

Samuel Cupp (LSU) Gravitational Self-Consistent Evolution June 19, 2019 9 / 14



Using the Constraints

We also examined the effect of adding constraints to the evolution
equations in the inner hyperboloidal region to cancel the bad terms. The
terms in question come in the form

∂t + ∂r∗

In the outer layer, this combination has a factor of (1 + H)−1 in τ, ρ
coordinates, which is finite. In the inner layer, the ∂ρ factor changes to
(1− H)−1, which is finite in the inner layer. The ∂τ factor stays as
(1 + H)−1, which blows up at the horizon. To fix this, we need to change
the above combination to

∂t − ∂r∗
We can do exactly what we need by subtracting some of the constraint
equations from these evolution equations.
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Constraint Damping

To dampen constraints and simply the equations,

we added the constraint equations to equations for h(i), i = 1, 2, 4, 5, 8, 9.

To resolve the infinities,

we subtracted constraint equations from equations for h(i), i = 2, 4, 8.

The net result:

for those three equations, we have changed the sign of the constraint
damping terms, meaning that the constraint violations grow uncontrollably
in the inner layer. Upon implementing these coupling coefficients, we
verified that the constraint violations grow with time.
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A Path Forward?

As it stands, it is unclear if hyperboloidal slicing is inherently unusable in
the inner region, or if there is another available trick to resolve these
difficulties.

Alternatively, another coordinate choice could be more appropriate for the
inner region, though the behavior at the horizon could still be problematic,
depending on how the second time derivative transforms in the new
coordinate choice.

Once an effective solution is chosen, the needed coupling matrix elements
can be quickly calculated in Mathematica notebooks and implemented
into the code.
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Questions/Discussion
Are there better coordinates to cover the inner region?

Is there another approach to somehow resolve the difficulties of using
hyperboloidal slicing in the inner region?
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