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The problem.

We wish to determine the self-forced motion and field (e.g. energy and angular
momentum fluxes) of a particle with scalar charge

�ψret = −4πq
∫
δ(4)(x− z(τ)) dτ.

Two general approaches:

I Compute enough “geodesic”-based self-forces and then use these to drive the
motion of the particle. (Post-processing, fast, accurate self-forces, relies on slow
orbit evolution)

I Compute the “true” self-force while simultaneously driving the motion.
(Potentially slow and expensive, potentially less accurate self-forces)



Effective source approach.

... is a general approach to self-force and self-consistent orbital evolution that doesn’t
use any delta functions.

Key ideas

I Compute a regular field, ψR, such that the self-force is

Fα = ∇αψR|x=z,

where ψR = ψret − ψS, and the Detweiler-Whiting singular field ψS can be approximated
via local expansions: ψS = ψ̃S(x|z, u, a) +O(εn).

I The effective source, S, for the field equation for ψR is regular at the particle location

�ψR = �ψret −�ψ̃S = S(x|z, u, a, ȧ, ä),

where �ψ̃S = −4πq
∫
δ(4)(x− z(τ)) dτ − S.



Status at last years Capra.

I 1+1D Discontinuous Galerkin code (with time dependent coordinates as well as
hyperboloidal slices) was able to do self-consistent evolutions under certain
conditions.

I No ä.
I With RK4: no ȧ and no extrapolation to higher modes.
I With ABMV: with ȧ but `max fairly modest.

I In other cases an instability sets in.

I The code was able to do analytically prescribed highly accelerated orbits where ȧ
and ä are needed.

I The code, developed over several years had grown increasingly messy and
unnecessarily complicated.

I With the plan to eventually release the code as open source it was decided that a
redesign and complete rewrite was necessary.

I This will also allow easier extension to other systems.



The new design.

I Relies on object oriented programming ideas to expose and exploit modularity
whenever possible.

I Implemented in modern Fortran 2003/2008.
I One of the basic concepts is an abstract ’Equation’ class that knows nothing about

the actual equations but defines the interface to certain type bound procedures
(like C++ member functions) that any other Equation class has to provide.

I On top of this different types of Equation classes that know about the data
structures needed (i.e. ODE or PDE equations) can be defined.

I On top of these actual equations systems (geodesic evolution, osculating orbits
evolution and scalar wave equation) can finally be defined.

I The time integrator need only know about the type bound procedures as defined
in the abstract equation class (implemented in the actual equation classes) and
hence is completely agnostic about the underlying data structures.

I Communication between equations are done through external data types where
different equation classes can write and read data without knowing about each
other.



The abstract equation class

type, abstract :: equation

integer :: ntmp

character(:), allocatable :: ename

contains

procedure (eq_init_interface), deferred, pass :: init

procedure (eq_rhs_interface), deferred, pass :: rhs

procedure (eq_set_to_zero_interface), deferred, pass :: set_to_zero

procedure (eq_update_vars_interface), deferred, pass :: update_vars

procedure (eq_save_globals_1), deferred, pass :: save_globals_1

procedure (eq_save_globals_2), deferred, pass :: save_globals_2

procedure (eq_load_globals), deferred, pass :: load_globals

procedure (eq_output), deferred, pass :: output

end type equation

Other classes can then extend this class, provide some of the routines and defer other
routines to the next level.



The code.

I Solves the spherical harmonic decomposed scalar wave equation in a
Schwarzschild spacetime with a scalar effective source.

I Uses the Discontinuous Galerkin method for spatial discretization.
I Uses the method of lines approach and supports a number of time integrators.
I Uses a world-tube approach.
I Uses hyperboloidal slices, placing the computational domain boundaries at the

horizon and I +.
I Uses a time dependent coordinate transformation to place the particle at a fixed

coordinate location.
I The effective source include acceleration terms.
I Can read in frequency domain code initial data for small ` modes.
I Can evolve geodesics directly or through the osculating orbits framework.

H T1 T2(λ, ξ)(τ, ρ) I +(τ, ρ)
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Test of the osculating orbits framework.
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The state of self-consistent evolution now.

p = 9.9, e = 0.1, q = 1/8. Only aµ passed in to the effective source. No fit to high `.

1.0e-10

1.0e-09

1.0e-08

1.0e-07

1.0e-06

1.0e-05

1.0e-04

1.0e-03

1.0e-02

 0  1000  2000  3000  4000  5000  6000  7000

F
r

Time (M)

l=0
l=5

l=10

l=15
l=20
sum



The state of self-consistent evolution now.

p = 9.9, e = 0.1, q = 1/8. Only aµ passed in to the effective source. Fit to high ` .
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The state of self-consistent evolution now.

I Very similar to last year, but now with a much nicer code.

I We still have instabilities when we pass in ȧ and/or ä as well as when we fit the
higher `-modes.

I Even using the Adams-Bashford-Moulton multi-value (ABMV) time integrator
only extends the runs a bit before they go unstable.

I Fitting high `-modes is important for accuracy so those instabilities need to be
fixed.

I We still need to investigate how sensitive the results are to leaving out ȧ and ä.

I Have recently implemented some new Hermite extrapolating smoothing
derivatives. First test did not look too promising but still inconclusive.

I May have to think outside the box to come up with ways to stabilize evolutions
with back reaction.



Conclusions and Outlook.

I After redesign and rewrite the code is much nicer, easier to maintain and extend.

I Before we had separate codes for scalar in Schwarzschild, scalar in Kerr, Lorenz
gauge, Regge-Wheeler-Zerilli and Teukolsky.

I Now they can all be implemented as different equation classes and share a
common infrastructure.

I A basic Teukolsky code (without effective source) has already been implemented
(Sarah Skinner).

I Samuel Cupp is working on the Lorenz gauge metric perturbation code.

I Have to fix back-reaction instabilities.

I Almost ready for release as open source software. Will be added to both the Black
Hole Perturbation Toolkit and the Einstein Toolkit.

I If anybody is interested in using the code before the release, please talk to me.


