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Tidal deformability and Love numbers of compact objects
New results for AdS-Schwarzschild black holes
GW astronomy:
e possible measurements by present and future gravitational-wave detectors

e tests of GR and (exotic) compact objects in the late inspiral

e first opportunity to look for new physics at the horizon scale
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Tidal deformations and Love numbers

Tidal Love numbers (TLNs) encode the information about the deformability of an object in a tidal
environment and depend significantly on the object internal structure and the dynamics of the
gravitational field

At first order, the relation between the tidal field and the induced moment is constant

The TLNS Of a black hole are precisely zero Fang & Lovelace (2005); Binnington & Poisson (2009); Damour & Nagar (2009)

for arbitrary strong fields Girlebeck (2015)

The TLNs of neutron stars contains information about their EQS Fanagan & Hinderer (2008); Hinderer (2008)

The TLNs enter the gravitational-wave signal as a 5PN correction which adds linearly to the phase
of the waveform and (to the leading order) depends on the | = 2 polar TLN

Gravitational waveform in the frequency domain h(f) = A(f) e!(¥Pp+¥10)
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Black-hole perturbations
° Regge-Wheeler—Zerilli Regge & Wheeler (1957); Zerilli (1970)

° Kodama-lshibashi (hlgher dimensions) Kodama & Ishibashi (2003); Ishibashi & Kodama (2011)

e Kovtun-Starinets (branes) <cviun & Starinets (2005)

We expand the perturbation in spherical harmonics (separated according to parity)

Terminology

e polar/electric/even/scalar/longitudinal

e axial/magnetic/odd/vector/transverse

For each sector one obtains a second-order differential equation

To define Love numbers it is sufficient to consider and construct g,.,, in the vacuum region external
to the body

To compute the Love numbers it is necessary to construct g, in the body’s interior as well
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A compact object immersed in a tidal environment described by the polar (respectively, axial)
moments £™ and B

The mass and current multipole moments M, and S; of the compact object are deformed

In linear theory, these deformations are proportional to the applied tidal field

Eo MI=1) [4r M e 3 II=1) [ 4r S
PT2 RN 21118y T T 21+ HRFTY 21+ 1 B,

To extract the tidal field and the induced multipole moments from the solution

e expansion of the metric at large distances in terms of the multipole moments, e.g.
2M 2
gt = -1+ — + m
>2

e evaluation of the Riemann tensor in Schwarzschild coordinates

7r1 MY° + (I < lpo|e):| = )IJ [S,Y’O +(I'< pole)])

More generically, Love numbers can be defined as the ratio between the normalisble and the
non-normalisable solutions
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Other known results

Love numbers for Schwarzschild in higher dimensions are not zero 1! & Smolkin (2012)

Some classes of black holes beyond vacuum GR and exotic compact objects
Mendes & Yang (2017); Cardoso+ (2017); Sennett+ (2017)

) Yazadjiev, Doneva & Kokkotas (2018

Love numbers for neutron stars in R ) and in higher dimensions

Chakravarti+ (2019)

Most of the results are for asymptotically flat spacetimes with some exceptions
Emparan, Fernandez-Piqué & Luna (2017)

Notice that some theories introduce extra degrees of freedom (non-minimally) coupled to gravity
and the response of black holes to external perturbations is generically richer
Partial results ]cOI' Kerr black holes Poisson (2015); Pani+ (2015); Landry & Poisson (2015)

An important object was missing: AdS-Schwarzschild black holes
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AdS-Schwarzschild black holes

Setup: spherically symmetric, static solutions

r 3

a0 _q_2M A

ds? = —e?0d? + 0V dP? + 2 d0?, ¥ =e 1

Static perturbations in the Regge-Wheeler gauge g,., = gLO,Z + huw
We end up with a single equation for each sector that in general we need to numerically integrate

These Love numbers depend on the multipolar number | and on the dimensionless combination
vV—AM
For pure AdS (M = 0) the results are analytical

We also have a map between RWZ, KI and KS, for master functions and equations and Love
numbers
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Polar sector

Asymptotically, H is given by a non-normalisable and a normalisable solution,

e {1 C3(P+1-4)

c
H~ =t 2
r 2Ar2 } r? (1]

and we define the dimensionless polar Love numbers as
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Axial sector

The asymptotic behavior of hy is

hONGF{1+W+.,.}+7§[1+.,.]

and we define the dimensionless axial Love numbers as
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Pure AdS

For pure AdS (M = 0) the Love numbers can be computed analytically

)2 |—o00 /3
2 - 3

kpo|ar=—2(/,_,1 4+2 )T (5+1 241
(=1 (%)

In the eikonal limit | — oo these results agree with Emparan, Fernandez-Piqué and Luna (2017) for

)’ o |k 2(1—M)(1+2)T (3
? r

+
axial — 3 i)
2

large wavenumber k
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Tidal Love numbers of ECOs and black holes

e Spherically symmetric, static background geometries
¢ The only surviving tide at large distances is gravitational

e Black hole limit: ¢ = 0 orrp — 2M, £ =rp/2M — 1

Tidal Love numbers

K K5 K K

NS static, C~ 0.2 210 1300 (K 70

ECOs  Boson star 41 403 —14 —212
Wormhole m 105(7+82 Tog €) 5(31+1g Tog €) m
Perfect mirror ij 35“0+83 ) 5(25{:’% Tog £) W
Gravastar 5(23—61og 219 log £) 35(37—6log 219 log £) 5(43712|o:;22+18\0g 3 7(307—60 |o3g22+90 Tog €)

BHs Einstein-Maxwell 0 0 0 0
Brans-Dicke 0 0 0 0
Chern-Simons 0 0 1.10ds/M* 1. 1025/ M*?

For boson stars, in the Newtonian regime, kf ~ 1/C?*" and kP ~ —1/C?
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Detectability: Model-independent tests

Assumptions:

e Equal mass binaries
¢ For terrestrial interferometers the prototype binary is at d = 100 Mpc
e For LISA the source is located at d = 500 Mpc

Tidal average deformability
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Detectability: Boson stars

loma/Al[%]

A more detailed analysis on massive and solitonic boson stars
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Quantum corrections at the horizon scale?

. 100]
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Extensions/What’s next?

Include tidal fields of different nature (electromagnetic, scalar)
— New families of Love numbers

Include tidal corrections of order > 5PN

¢ Alternative theories of gravity (in progress)

AdSs for holography

Rotating black holes
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Conclusion & Outlook

® New results for AdS-Schwarzschild black holes (non-zero TLNs)

Non-vanishing (logarithmically small) Love numbers of ECOs

Tidal effects can be used to explore
e Nature of event horizons
e Existence of ECOs
¢ Strong-field behaviour of gravity
Detectability
e aLIGO ECOs with C < 0.2; constraints on BS models, exclude models with small compactness
e ET ECOs with C < 0.35; can discriminate a BS binary from a BH binary
e LISA supermassive ECOs with C < 0.49; can discriminate a BS binary from a BH binary
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Questions?



