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Working asymptotic fluxes, two gauges, analytical and numerical 
agreed with Tanaka et al, Harms et al

..no flux balance, apparent divergences, unclear interpretations(more later) 
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Last Capra..

Generated some discussion which lead to clearing up all issues. 



Adiabatic evolutions and flux balance laws

See other talks T. Tanaka, T Osburn, S Hughes, etc

One slide review: adiabatic order: dutdt=dEdt, heuristically balance this with flux 

u↵
r↵u� = ✏hf�i+O(✏2)

Killing vectors->conservation laws. Specifically, both Schw and Kerr possess two killing 
vectors

⇠↵ = @t, ⌘↵ = @' u↵r↵(⇠
�u�) = 0

ut = �E

u' = L
then, e.g.

dE

d⌧
= �hfti

Heuristically we can make the identification 

� 1

ut
hfti ⌘

dE1

dt
+

dEH

dt



Relating local orbit-averaged SF to Teukolsky amplitudes: 
Key points 

Following some algebraic manipulations, the MiSaTaQuWa SF expression can be  
rewritten as 
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1

2
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i.e. the familiar
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Relating local orbit-averaged SF to Teukolsky amplitudes: 
Key points 

The radiative part of the MP can be related to the Teukolsky amplitudes using CCK 
reconstruction (see T Tanaka’s talk on monday)

hrad

↵� = D�H

. . . ⌧
DE
d⌧

�
=

X 1

4⇡!
|Z(m)

lm |2

Ultimately we have that

hf↵⇠↵i =
1

2
hu↵u�L⇠h

rad
↵� i

(lots of work)



Situation with a spinning secondary: ‘background’

Equations of motion: Mathisson-Pappepetrou-Dixon (to linear in the spin) (SPELL)

Dp↵

d⌧
= �

1

2
R↵

���u
�S��

DS↵�

d⌧
= 2p[↵u�] = O(�2)

At linear in sigma p↵ = µu↵ +O(�2)

For this talk we will assume 
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Situation with a spinning secondary: Perturbed spacetime

MPD-Harte: Everything is ‘upgraded’ to perturbed spacetime

Where the ‘m’ and ’  ’ metric perturbations are sourced by

with

T (m)
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Z
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Situation with a spinning secondary
Equations of motion MPDH & metric perturbation with dipolar source

As usual, write as derivatives wrt background metric, and everything else as ‘forcing’ 
MPD-Harte: Everything is ‘upgraded’ to perturbed spacetime
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d⌧
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1

2
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Question: Under an adiabatic type assumption (i.e. orbit averaging the RHS) how  
                 much can be filled in by asymptotic flux data?



Situation with a spinning secondary: situation last year was 
which flux balance?

Under the MPD equations, the conserved charges are

Last year, we didn’t know what to identify with the asymptotic fluxes, i.e.

E = u↵⇠↵ +
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2
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Approach: follow formal procedure as in non-spinning case

Procedure: 
• CD the conserved quantity

• Write the result in terms of the radiative MP

• Follow metric reconstruction in reverse to write expression in terms of 

Teukolsky amplitudes
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Approach: follow formal procedure as in non-spinning case

Notably, each of these terms are NOT radiative. You only achieve l-mode 
convergence in combination.

Procedure: 
• CD the conserved quantity

• Write the result in terms of the radiative MP

• Follow metric reconstruction in reverse to write expression in terms of 

Teukolsky amplitudes

⌧
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The RHS here is the ‘local part’ of the flux balance law we derive



Approach: follow formal procedure as in non-spinning case

To get something radiative, look at the GF representation
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Approach: follow formal procedure as in non-spinning case

To get something radiative, look at the GF representation
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Approach: follow formal procedure as in non-spinning case

To get something radiative, look at the GF representation

From which follows the expected flux formulae:
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Approach: follow formal procedure as in non-spinning case

To get something radiative, look at the GF representation

Using the symmetry                                              the two terms are identical modulo x and 
x’
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Summary of flux balance law

Ultimately the loss of energy is the expected extension of the usual expression

⌧
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�
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This is equivalent to the local calculation with the retarded metric perturbation
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Explicit verification

The introduction of spin introduces two main changes to existing codes for the metric 
(see Sarp’s talk from last year)

1. Spin altered background trajectory: e.g. allowed frequencies 

2. Dipolar term in stress energy 

We specialise to circular obits, Schwarzschild, spin aligned with orbital AM

! = m⌦' = !0 + !�� +O(�2)

Likewise, 4-velocity appearing in T has a spin dependent piece!

More singular source, need careful analysis of Lorenz gauge matching conditions
Derive new Teukolsky source (this appears in the literature for flux calculations)
—> CCK procedure remains unchanged



Explicit verification

Numerical approaches

1. Lorenz gauge

2. Radiation gauge

Analytical approach 

2. Radiation gauge

Technically similar to previous calculations ( see C. Murra’s talk), expand at 
each PN order to linear in spin



Results

22

r0 F
H

� F
1
� F local

� |1� hFut
i�/F

local

� |

6 �2.44110277062⇥ 10�6
�5.05052142614⇥ 10�4

�7.62945928003⇥ 10�4 1.96⇥ 10�11

8 �5.85126152707⇥ 10�8
�6.2795524478⇥ 10�5

�8.27935402002⇥ 10�5 5.08⇥ 10�12

10 �4.02409747537⇥ 10�9
�1.35283840476⇥ 10�5

�1.66725567025⇥ 10�5 1.79⇥ 10�11

12 �4.91730395266⇥ 10�10
�3.96761534542⇥ 10�6

�4.69443695538⇥ 10�6 3.09⇥ 10�11

20 �1.70447749342⇥ 10�12
�1.36368164644⇥ 10�7

�1.49916383527⇥ 10�7 1.61⇥ 10�10

30 �2.14463437625⇥ 10�14
�9.69553949111⇥ 10�9

�1.03086338554⇥ 10�8 4.7⇥ 10�10

40 �9.92781195010⇥ 10�16
�1.49558022979⇥ 10�9

�1.56494549394⇥ 10�9 1.45⇥ 10�9

50 �9.25922620715⇥ 10�17
�3.51467899595⇥ 10�10

�3.64338708148⇥ 10�10 2.97⇥ 10�9

60 �1.33975153331⇥ 10�17
�1.07706168184⇥ 10�10

�1.10964686283⇥ 10�10 4.3⇥ 10�9

70 �2.62071409834⇥ 10�18
�3.96302737321⇥ 10�11

�4.06516696731⇥ 10�11 7.28⇥ 10�9

80 �6.38761880534⇥ 10�19
�1.66688751664⇥ 10�11

�1.7043065291⇥ 10�11 1.04⇥ 10�8

90 �1.84096376783⇥ 10�19
�7.76490004651⇥ 10�12

�7.91929323499⇥ 10�12 1.37⇥ 10�8

100 �6.05434134454⇥ 10�20
�3.92050069646⇥ 10�12

�3.9904602329⇥ 10�12 1.94⇥ 10�8

TABLE I. Contribution at O(�) to the radiated flux for a spinning body moving on a circular orbit of radius r0 about a

Schwarzschild black hole. The data in the second, third and forth columns can be found digitally in the Black Hole Perturbation

Toolkit [29].

FIG. 2. Comparison between numerical and post-Newtonian results for the linear-in-� contribution to the horizon flux, FH

� ,

(left panel) and the infinity flux, F1
� , (right panel). NW: Something odd with the comparison at the ISCO on the right

panel

We give results for the F
H/1
� (r0) and the local terms in Table I. In all cases we find excellent agreement between

the asymptotic fluxes and the local force, as indicated by the 5th column in the table. For all the orbital radii we

have explored we find that the flux is reduced for a spin-aligned binary (with respect to a non-spinning binary). This

reduction in the flux will lead to spin-aligned binaries taking longer to inspiral. It interesting to note that this is

consistent with the “orbital hangup” e↵ect observed in numerical relativity simulations [28].

VIII. CONCLUSION

NW: Obvious extensions: Kerr, non-circular, non-aligned spin, directly numerically calculate the

linear in � piece of the fluxes

NW: When discussing extension to Kerr we should mention that aspects of this have been explored

in the near extremal case [30].

NW: Also mention 2nd-order with a spinning secondary (I think Adam’s student is looking into the

formulation for this).



Results-radiation gauge divergences (which cancel)
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—individual terms are explicitly not radiative, but in combination all divergences   

   disappear

The PN expansion of the terms making up the flux balance law for large l:

Might need to be careful in tests of convergence!



Conclusions/implications

The flux balance law we have derived, tells you how to evolve the specific 
combination of the 4-velocity and spin tensor

So by simultaneously integrating 

E = u↵⇠↵ +
1

2
S↵�r↵⇠� .

DŜ↵�

d⌧
= �u↵S�[�g�]�

⇣
h(m)
��;↵ + h(m)

↵�;� � h(m)
↵�;�

⌘
+O(m2

2) +O(�2)

which requires local information, the system can be evolved.

Open question: can the RHS here be related to asymptotic information somehow? 



Conclusions/implications— To do list

• Relax aligned spin assumption

• Action angle formulation- validate for resonances

• Carter constant calculation

Verify things for Kerr/different orbital configurations

We now have SF codes for a dipolar source, can start investigating how to generate 
data and include in evolution. 

Formalism 

Practical calculation 




