Probing the vicinity of the Galactic
Center black hole with LISA

Alexandre Le Tiec

Laboratoire Univers et Théories
Observatoire de Paris / CNRS

Collaborators: E. Gourgoulhon, F. H. Vincent, N. Warburton
To appear in Astron. Astrophys. (2019), gr-qc/1903.02049



Dec. offset from Sgr A* (arcsec)

0.20

0.15

0.10

0.05

0.00

Sgr A* : the Galactic Center black hole

A A B B B S B

W SHARP (corr.)
| @ NACO (corr.)
GRAVITY

T T S IS S SN AN

‘

w

k-

e

5000 Rs =400 AU

Ly
g
=]

]

Av.

7

SgrA*
= g

o

0.05

0.00 -0.05
R.A. offset from Sgr A* (arcsec)

[GRAVITY, A&A 2018]



Dec. offset from Sgr A* (arcsec)

0.20

0.15

0.10

0.05

0.00

Sgr A* : the Galactic Center black hole

L S B S S s S B
W SHARP (corr.)

| @ NACO (corr.) d
m GRAVITY

5000 Rs =400 AU

-
I\
P :

%@m

T T S IS S SN AN

0.05 0.00 -0.05
R.A. offset from Sgr A* (arcsec)

[GRAVITY, A&A 2018]

M = 4.152 + 0.014 x 10°M
D = 8178 + 13 pc
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Spin distribution of supermassive BHs
[Reynolds, Nat. Astron. 2019]
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GW frequencies of Sgr A* close orbits
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Previous work on Sgr A* as a LISA source

Low-mass main-sequence stars are good candidates for LISA
[Freitag, ApJ 583 (2003) L21] [Barack & Cutler, PRD 69 (2004) 082005]

Zero-eccentricity EMRIs from binaries tidally split by Sgr A*
[Miller et al., ApJ 631 (2005) L117]

Extreme mass ratio bursts of GW from highly eccentric orbits
[Berry & Gair, MNRAS 429 (2013) 589]

GW from orbiting MS stars undergoing Roche lobe overflow
[Linial & Sari, MNRAS 469 (2017) 2441]

Ensemble of macroscopic dark matter candidates, e.g. PBHs
[Kiihnel et al. (2018), gr-qc/1811.06387]

LISA could detect tens of brown dwarfs orbiting Sgr A*
[Amaro-Seoane (2019), gr-qc/1903.10871]



Our study

Fully relativistic framework

¢ Gravitational waveform from solution of Teukolsky equation

e Tidal effects from theory of Roche potential in Kerr metric
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® [n situ formation of MS stars [Collin & Zahn, A&A 2008]
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All computations have been implemented in a Python package for
SageMath that is part of the Black Hole Perturbation Toolkit:

http://bhptoolkit.org/
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Roche radius in the Kerr metric
[Dai & Blanford, MNRAS 2013]
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Roche radius in the Kerr metric
[Dai & Blanford, MNRAS 2013]
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Roche radius in the Kerr metric

[Dai & Blanford, MNRAS 2013]

M L3 1/3
e~ 1.14 <> — R _338 (p@>

p M p
Jupiter Sun Earth red dwarf  brown dwarf  white dwarf
u/Mo  9.55 x 1074 1 3.0x10°° 0.20 0.062 0.80
R/Ro 0.10 1 9.17x1073 0.22 0.078 5.58 x 103
0/po 0.94 1 3.91 18.8 131. 1.10 x 106
r/M 34.9 34.2 21.9 13.3 7.31 0.28

(nonspinning black hole, irrotational body)
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Signal-to-noise ratio in the LISA detector
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Signal-to-noise ratio in the LISA detector
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Signal-to-noise ratio in the LISA detector

Object rn/M SNR (1d) SNR (1yr)
1M star 34.5 3.2 61
0.3Mg red dwarf 15.7 54 1.0 x 103
0.05M brown dwarf 8.4 165 3.2 x 103
compact object (a = 0) 6 15x10* 2.8 x10°

compact object (a = 0.5) 42 49 x10* 9.4 x 10°
compact object (a = 0.98) 1.6 21x105 4.0 x 10°

(inclination angle 6 = 0)



Minimal detectable mass by LISA

SNR=10 (T=1yr)
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Maximal orbital radius for LISA detection

SNR=10 (T'=1yr)
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Time spent in LISA band during inspiral

Adiabatic inspiral driven by
energy balance:

E=—(Fo+ ) =—Fo

!
" E()

dr
r ~F'OO (r)

Tinsp[rla r2] =~

I'Roche

I'min = Nsco (compact object)
Tin—band = Tinsp[rO,maxa rmin] where
'min = Roche (other body)



Time in-band for an inspiralling compact body
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Time in-band for brown dwarfs and MS stars

brown dwarf red dwarf Sun-type 2.4Mg-star

/Mg 0.062 0.20 1 2.40
0/Po 131. 18.8 1 0.37
10,max/ M 28.2 35.0 47.1 55.6
"Roche/ M 7.31 13.3 34.2 47.6
Tin-band [10° yr] 4.98 3.72 1.83 0.94

(nonspinning black hole, irrotational star, inclination angle 6 = 0)
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Brown dwarfs are promising candidates

X-MRIs:
Extremely Large Mass-Ratio Inspirals
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For my dear friend Tal Alexander. Thanks for having been a human being.

The detection of the gravitational waves (GWs) emitted in the capture process of a compact
object by a massive black hole (MBH) is known as an extreme-mass ratio inspiral (EMRI) and
represents a unique probe of gravity in the strong regime and is one of the main targets of the Laser
Interferometer Space Antenna (LISA). The possibility of observing a compact-object EMRI at the
Galactic Centre (GC) when LISA is taking data is very low. However, the capture of a brown dwarf
(BD), an X-MRI, is more frequent because these objects are much more abundant and can plunge
without being tidally disrupted. An X-MRI covers some ~ 10® cycles before merger, and hence stay
on band for millions of years. About 2 x 10° yrs before merger they have a signal-to-noise ratio
(SNR) at the GC of 10. Later, 10* yrs before merger, the SNR is of several thousands, and 10*
yrs before the merger a few 10%. Based on these values, this kind of EMRIs are also detectable at
neighbour MBHs, albeit with fainter SNRs. We calculate the event rate of X-MRIs at the GC taking
into account the asymmetry of pro- and retrograde orbits on the location of the last stable orbit.
‘We estimate that at any given moment, and using a conservative approach, there are of the order of
2 20 sources in band. From these, 2 5 are highly eccentric and are located at higher frequencies,
and about 2 15 are circular and are at lower frequencies. Due to their proximity, X-MRIs represent
a unique probe of gravity in the strong regime. The mass ratio for a X-MRI at the GC is ¢ ~ 10%, i.e.,
three orders of magnitude larger than stellar-mass black hole EMRIs. Since backreaction depends
on ¢, the orbit follows closer a standard geodesic, which means that approximations work better in
the calculation of the orbit. X-MRIs can be sufficiently loud so as to track the systematic growth
of their SNR, which can be high enough to bury that of MBH binaries.
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A low-mass star candidate?
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A 149 min periodicity underlies the X-ray flaring of Sgr A*
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ABSTRACT

In a paper in 2017, I have shown that 39 large X-ray flares of Sgr A* that were recorded by
Chandra observatory in the year 2012 are concentrated preferably around tick marks of an
equi-distance grid on the time axis. The period of this grid as found in that paper is 0.1033 d.
In this work I show that the effect can be found among all the large X-ray flares recorded by
Chandra and XMM — Newton along 15 yr. The mid-points of all the 71 large flares recorded
between years 2000 and 2014 are also tightly grouped around tick marks of a grid with this
period, or more likely, 0.1032 d. This result is obtained with a confidence level of at least
3.270 and very likely of 4.62¢'. I find also a possible hint that a similar grid is underlying IR
flares of the object. I suggest that the pacemaker in the occurrences of the large X-ray flares
of Sgr A* is a mass of the order of a low-mass star or a small planet, in a slightly eccentric
Keplerian orbit around the SMBH at the centre of the Galaxy. The radius of this orbit is about
6.6 Schwarzschild radii of the BH.

Key words: black hole physics —Galaxy: centre — X-rays: individual: Sgr A*.
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Summary

We have computed the GW emission and SNR in LISA for
close circular orbits around Sgr A* in full general relativity

Compact objects, MS stars of mass < 2.5Mg and brown
dwarfs orbiting Sgr A* are all detectable in 1 yr of data

LISA can detect orbiting masses close to the ISCO as small
as 1 Mg if Sgr A* is a fast rotator — primordial BHs

The time spent in LISA band (SNR > 10) during the slow
inspiral is ~ 10° — 10° yr, making brown dwarfs promising
candidates

Sgr A* is a valuable target for LISA



