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Motivations

Motivations

e Extremal Kerr (EK) black holes are the "last frontier "
between rotating black holes and naked singularities

e There are observational evidences that support the
existence of extremal black holes in nature : Lijun Gou et
al. ‘14
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Linear Perturbation of Rotating BH
Teukolsky Equation

Teukolsky Equation

e The radial factor of the perturbation obeys the ODE :

ATS

da (ASH dstmw(r)) N K2 — 2is(r — M)K
dr dr A

+ diswr — SMmC) sRimw(r) =0

where
K=(?+a®)w—am @

e For a < M this equation has two regular singular points
atr =ry andr = r_ and an irregular one at r = oo

e For a = M this equation has two irregular singular points
atr =M andr = o0

e This different structure of the ODE requires a different
approach when dealing with the extremal case

e Fornowon M =1/2
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Linear Perturbation of Rotating BH
Teukolsky Equation

Sub-extremal Case a < M S————

extremal and

near-extremal Kerr
black holes

e The asymptotic behavior

) B;rfgi)Afsef’“T'*, for v — rg

RN ~ el . e W
imw ref inc

Ime ;3571 T Blmw = for 7 — oo

ref —s _ —idTx up Ty
C A" %e + Cimw® s

Imw for r— ry
l‘;p ~ A elwTx )
mw rans f
or 7 — oo
Ilmw r2s+1"

where® = w — mQ g and Qg = a/(ri +a?)

e Define R} and R;? as

in up
»in — lew RYP — lew
Imw = and R, = (5)
Blrans Imw Ctrans
Imw Imw
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Linear Perturbation of Rotating BH
Teukolsky Equation

Extremal Case a = M

e The asymptotic behavior

x gtrans _i5— e~ in(@)
Blmwe * 25 ’
xRiln ~ z
me i (z+In(x))
x gref x ginc

lmw ™ ool Imw

g e—iwln(x)
x ~ref Lors
clm,we 2@ 228
R,
elw(z+1n(z))
x ctrans
lmw ™ 1125 )

wherek = w — m(Qyg =1)andz =r —rg =r —1/2

e Define *R" and *R'P as

Imw Imw
. in
X in — mw X Up —
lew - x pirans and lew -
Imw
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Linear Perturbation of Rotating BH
GF of Teukolsky Equation

GF of Teukolsky Equation e and

near-extremal Kerr

black holes

e Construct the Green Function (GF) of the radial
Teukolsky equation as

RUP (r)Ri" (7"/) RuP (r’)Ri" (7“)
Glmw<T|T/) = M@(T - T/) + M@(T/ - 7‘) 9) GF of Teukolsky Equation
Wimw Wimw
e For the sub-extremal case
. dRYP _ dRn inc
— s+ 1 in L up 1 _ lm
Wimw = A° (lew d:w ~ Bime d;nw =2 Bﬁr::m: (19
Imw
e For the extremal case
- deUP B dXRin X pinc
X _ +1 [ x pin 1 X BUp L o7 Im
Wimw = A° < leme - le,w dzmw - 2waB;r:r]\:} an
mw
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Linear Perturbation of Rotating BH
GF of Teukolsky Equation

o~ Spectroscopy of
) (W) extremal and
\ near-extremal Kerr
black holes
R(w)
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S 4
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e Poles : quasi-normal modes (QNMs) contribution

e Branch cuts (BCs) : power-law decays contribution
e« Atw=0for0 > a > M, Leaver ‘86
e At w = m for a = M, M.Casals and P.Zimmerman ‘18
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Linear Perturbation of Rotating BH

Superradiance

Superradiance

e An initially ingoing scattered wave at infinity will
experience a fractional variation of energy

8wMkry
-, for s =0
Wimw %
. -1 2w
Zslmw = dE oyt (dEzn) 1= > for s =1
dt dt Mkry ‘Wlwlwl
dw” ! f 2
— or s =
k(2Mr1 )3 (k2 + 4T2TE) |Wipm,, |2
(12)

with Ty = (M2 — a?)1/2/(4nMr)

e Energy extraction when Z;,,,,, > 0 +— (w — mQg)w <0

e superradiant bound frequency :
wsr = mQyg — m(a — M)
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Linear Perturbation Methods

The MST Method

Spectroscopy of

MST Method : Extremal case oxtromal and

near-extremal Kerr

black holes

e Developed in M. Casals and P. Zimmerman ‘18

i X pin XpUP
e Expressions for *R;} ~and "R, interms of confluent

hypergeometric functions with coefficients a;,

_ o Cou1 . oam
x sin(w (v + tw)) (KV(_lk) v +CK—1/—1)
Wimw = - - - T (13)
sin(27v) (_ik)s+iw,,,,1E—mrx,s/ze—m-(zd»f)
14s—i Cl—v—iw — — i e MST Met
ol+s “"w’“*s(zw)l v—iw —37Tw/2 —mi E%czfoo(—l)n”'; The MST Method
v » Re(w) >0,
S0 Dlap+xs) 0
n=-—o0 T(qf—xs) ™
where
5 i - - —v—1 ins 2nepCrnyn—
CEie—szu(iw)Quw 21/’ KUE(Ew) v lemrs n=p “N,Nn—p , (14)

P
2= Pnp—n
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Linear Perturbation Methods

The MST Method

MST Method : Extremal case

e Developed in M. Casals and P. Zimmerman ‘18

e Expressions for *RI" and *R;® in terms of confluent

and

Imw

hypergeometric functions with coefficients a?,

D, ;=

T(qy, + xs)I'(1 — 2q;,)(ay, + xs)j a¥ (—2iw)+
T(g% — xs)T(1 — a4 + xs)(2a%); 30 " ’

I(g;, +xs)T (2, — 1)1 — gy, + Xx—5);

Lay (—ik)? ",
T(qy — xs)T(ay + x—s)(2 — 2q7); 5!

Xs = 8 — iw, qzzn+u+1

anpay, 1 + Bnay, +ynay,_ =0, neEZ,
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Linear Perturbation Methods

The MST Method

MST Method : Sub-extremal case

e Developed in Mano, Suzuki and Takasugi ‘96
; in up
e Expressions for )}, ~and R, interms of
hypergeometric functions

e Similar expressions
e Define the Wronskian factor

giw 25 girey (142 1og m/(pm))ew(lnwfl*%)

lefm,u) = _T . Ti(v+2—s) Wimews
e~ 2¥eiwre2 MY (1 — s — 2iey)
where
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Linear Perturbation Methods

The MST Method

Spectroscopy of

PhySiCS behind V extremal and

near-extremal Kerr

black holes

Near extremal Kerr (NEK): damped modes (DMs) and
zero-damped modes (ZDMs)
e In the eikonal limit
« DMs only exist if u = |m|/(l +1/2) 5 0.74 (as in H.
Yang et al ‘13)
« Same behaviour at EK (as in M. Richartz ‘16)

e For general [ and m,
. Define v. = v(w =m), 625 = —(v. + 1/2)? and
F2=0%,+1/4,then:

’(5%3‘ F? ‘EIDMsinNEK‘ Z fora = M nearw =m

<0 <0 Yes continuous and monotonous
>0|>0 No discontinuous and oscillatory
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Numerical Results

Superradiance

Spectroscopy of

S U pe rrad i ance extremal and

near-extremal Kerr

black holes

® Zoow, 025 >0,F2 >0

Superradiance
(2) s=2)=2m=2,a=099M, 2Mwg g ~ 1.91 (b) s=2)-2m=2,a=M, 2Mw g = 2

Figure: Full numerical value of Z594,,, its small w and

w — m(a = M) asymptotic are represented as blue, red and black

lines respectively.
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Numerical Results

Superradiance

Spectroscopy of

S U pe rrad i ance extremal and

near-extremal Kerr
® Ziiw, 0% > 0,F2>0

black holes

Z7[%]
100+ R —

Superradiance

2Mw
0.005 0.010 0.050 0.100 0.500 1

(@) s=1,)=1m=1,a=M, 2Mwgp = 1

Figure: Full numerical value of Z111,,, its small w and
w — m(a = M) asymptotic are represented as blue, red and black
lines respectively.
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Numerical Results

Superradiance

Superradiance

® Zi11w, 055 > 0,F2 >0

(a) Zoom-inforw — m ™ (b) Zoom-in for w — m™T

Figure: Full numerical value of Z111,, and its w — m(a = M)
asymptotic are represented as blue and black lines respectively.
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Numerical Results

Superradiance
Spectroscopy of
extremal and
near-extremal Kerr

Superradiance
black holes

] Z032w15%R<01]:52<0

1Z1l[%]

1000.00

0.01

Superradiance

2Mw

0.05 0.10 0.50 1

(@) s=0l-3m=2a-M, 2Mwgp = 2

Figure: Full numerical value of Zy32,,, its small w and
w — m(a = M) asymptotic are represented as blue, red and black

lines respectively.
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Numerical Results

QNM’s in the NEK case

Spectroscopy of
extremal and

Near eXtremal Kerr ONMS near-extremal Kerr

black holes

2Mim(w)

2MRe(w)

(b) s=—2,1=2,m=1,a =0.998M,

(@) s =—2,1=2,m =0,a = 0.998M,
2Mwgp = 0.938, 1 = 0.4 < 0.74

2Mwgpr =0, =0 < 0.74
Figure: Contour plots of log,, |W/;w| in the near-extremal Kerr
(NEK) case. Both damped modes (DM’s) and zero damped modes
(ZDM's) are found. QNM are marked in red.
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Numerical Results

QNM’s in the NEK case

Spectroscopy of

extremal and

Near eXtrema| Kerr QNMS near-extremal Kerr

black holes

2M Im(w)

N\

18 19

QNM's in the NEK case

20
2M Re(w)

(@) s=—-2,1=2,m =2,a =0.9999M,
2Mwgp ~ 1.972, 1 = 0.8 > 0.74

Figure: Contour plots of log;, [W;/ | in the near-extremal Kerr
(NEK) case. Only zero damped modes (ZDM'’s) are found. QNM are

marked in red.

15/21



Accumulation of QNM’s ]




Numerical Results

Accumulation of QNM’s

Formation of the Superradiant BC

LogolWal 2

2MRe(w)

25

3.0

Figure: 3D plot for the absolute value of the Wronskian for the mode
s=0,l=3,m=2,a=0.95M and 2Mwgr ~ 1.447.
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Numerical Results

Accumulation of QNM’s

Formation of the Superradiant BC

4

LogyolWal 5 ©

2MRe(w) 25

3.0

Figure: 3D plot for the absolute value of the Wronskian for the mode
s=0,l=3m=2,a=0.99M and 2Mwgr ~ 1.735.
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Numerical Results

Accumulation of QNM’s

Formation of the Superradiant BC

IN

Logioal , <

-2

15

2MRe(w) 25 -2

3.0

Figure: 3D plot for the absolute value of the Wronskian for the mode
s=0,l=3,m=2,a=M and 2Mwgsr = 2.

16/21

Spectroscopy of
extremal and
near-extremal Kerr
black holes

Accumulation of QNM's




Numerical Results

Accumulation of QNM’s

Spectroscopy of

Formation of the Superradiant BC exvoma na
black holes

e Accumulation of zeros of Wi,,,.,, QNM’s
e Accumulation of poles of W;,,,.,, what are those?
e Poles come from I'(1 — s — 2je.)

o 1 —5—2ie; =—n

e Equivalent to the condition

w=mQy —27iTy(n—s+1),

found in U. Keshet and A. o
Neitzske ’08 as the condition for 1
totally reflected modes (TRMs).

Accumulation of QNM's
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Numerical Results

QNM’s in the EK case

Spectroscopy of
extremal and

Extreme Kerr QNMs xiremal and

black holes

2MIm(w)

16 18 20 22 24 26
2M Re(w) QNM's in the EK case

i
(@) s=0,1=3,m=272<0 (b)s=-2,1=2,m=172<o0

Figure: Contour plots of log; o [*Wimw (2M)2%| in the
complex-frequency plane. Both damped modes (DM’s) and the

branch cut (BC) can be seen.

18/21



Numerical Results

QNM’s in the EK case

Spectroscopy of

EXtreme Kerr QNMS extretmal alng

black holes

2M Im(w)

| L INNNRRERRRN

00 05 10 15
2M Re(w)

QNM's in the EK case

Figure: Contour plots of log; o |*Wim., (2M)24| in the
complex-frequency plane, for the mode s = —2,1 = 2, m = 0 for
which 72 < 0. DM’s and BC can be seen.
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Numerical Results

QNM’s in the EK case

Spectroscopy of

EXtreme Kerr QNMS extremal and

near-extremal Kerr

black holes

0.0 05 1.0 15 20

2M Re(w) QNM's in the EK case

Figure: Contour plots of log; o |*Wime (2M)24| in the
complex-frequency plane, for the mode s =1,/ =1, m = 1 for
which 72 > 0. Only the BC can be seen in this case.
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Numerical Results

QNM’s in the EK case

Spectroscopy of

EXtreme Kerr QNMS extretmal alng

black holes

1—\\
RN :
T [
. £ oo
i z / /
4 7 Lin >erturbation
Me
_o[|
Numerical Results
1.0 1.5 20 25 3.0 35
s 10 s 20 25 30
Mo 2M Re(w)
(a) s=-21=2,m=2F2>0 (b) s=-2,1=3m=3F2>0 QNMSs in the EK case
Conclusions

Figure: Contour plots of logy o |*Wime (2M)2%| in the extremal Kerr
(EK) case. The superradiant BC and also a NSDM (non-standard

DM) can bee seen.
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Conclusions

Spectroscopy of

COﬂClUSiOﬂS extremal and

near-extremal Kerr

black holes
e Calculated Z, in the extremal case agreeing with
Starobinskii‘73

e Formation of the extremal BC by an accumulation of
QNM’s (Glampedakis and Andersson ’00) and TRM’s

e ZDM and DM behavior as described in H. Yang et al 13
and Richartz’16

e NSDMs were found for s=-2, I=m=2 (as anticipated in G.
B. Cook and M. Zalutskiy’14) and |=m=3

e No evidence of BC nor QNM on the upper
complex-frequency plane - mode stability Conclusions

e Open questions:

« Exact condition for the existence of DM’s (and NSDM)
« Waveforms for modes with no QNMs
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