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* Background:
Extreme mass-ratio inspirals (EMRIs) and LISA
What role will orbital eccentricity play?

« Theory:
Black hole perturbation theory and the self-force

Inspiral trajectories: kludge vs. self-force

« Application:
Rapidly computing self-forced inspirals
Waveform generation: kludge vs. Teukolsky




0P | — GW150914
Gal. Bin. (SNR > 7)

- EMRIs radiate gravitational waves at frequencies
where LISA is most sensitive
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« EMRIs aren't the loudest signals, but their long
durations allow high SNRs with matched filtering

- These features will facilitate precision tests of B Neutron Strs
general relativity through LISA observations

« Unlike LIGO-Virgo sources, EMRIs are expected
to exhibit orbital eccentricity, so handling
eccentricity is a priority during modeling

LISA event rate

» The eccentricity can be as highas: e = 0.75'!

Hopman & Alexander (2005)




EMRI Modeling: Theory

« Assumptions: general relativity is valid throughout, environmental effects are negligible

* Further simplifications for this prototype: consider only non-spinning binary components

« Because the mass-ratio (n = u/M) is extremely small,
can expand the field equations in powers of n
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Schwarzschild metric

- Additional terms (2"d order) are also important, will incorporate in future work

- Einstein’s equations govern the _(1) af (1) _
metric perturbation (Lorenz gauge): O9uy + Ryy Guv = —16m 1y



ngoy + RGL g4 =—16nT,

(assume the time dependence of the orbital

* Separation of variables: 1 Siion involves a discrete frequency spectrum)
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« Solve a system of ODEs for each mode, use the method of
“‘extended homogeneous solutions” for non-circular orbits

Examples:
Detweiler & Poisson (2004) Akcay (2011)
Barack & Sago (2007) Akcay, Warburton & Barack (2013)

Barack, Ori & Sago (2008) Osburn, Forseth, Evans & Hopper (2014)



- Kludges involve qualitative mechanisms for modeling inspirals and/or waveforms

» Because the waveform is computed independently, inspiral models are examined first

« To meet LISA requirements of <1 radian accuracy for the accumulated orbital phase:
must avoid weak field, slow motion, and/or adiabatic approximations ( )

« To calculate the self-force, consider how the local metric perturbation interacts with the
inspiraling small body

Inspiral models analytic numerical post- flux
Approximations | kludge kludge Newtonian balance

self-force

weak field
slow motion
adiabatic




— F ﬂh accessible from
» The (retarded) metric perturbation Z(; Lrety  LLES) local expansion

diverges at the position of the small body
self -force each spherical harmonic mode is finite

» Various regularization schemes exist to
access the finite self-force

* The “mode-sum” regularization scheme is
implemented in this work

« The self-force is pre-computed for a dense
array of orbital configurations

« Through interpolation, arbitrary orbital
configurations are accessible




« The inspiral is parameterized by an evolving
set of elements describing tangent geodesics
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Pound & Poisson (2008)
Gair, Flanagan, Drasco, Hinderer & Babak (2011)

« It is straightforward to couple our self-force interpolation
model to the ODEs governing the orbital elements

Warburton, Akcay, Barack, Gair & Sago (2012)
Osburn, Warburton & Evans (2016)

« The trajectory is reconstructed from the orbital elements



- Although the accuracy of self-forced inspirals is vital for LISA data analysis, additional
enhancements are necessary to compete with the speed of kludge models

» The near-identity transformation (NIT) accomplishes this by eliminating fast
oscillations in the equations of motion with modified orbital elements

N
lent, ‘Pp} f— 18,D,1 "pp}

“ inverse NIT

(approximate)

The physical The NIT
parameters

parameters
oscillate rapidly are smooth
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—— Self-force trajectory: (p, €)

NIT trajectory: (p, &)
Inverse NIT trajectory: (b - n Y, & - n Y{")

~10 ms NIT inspiral computation time
Van De Meent & Warburton 2018




* The “Fast Self-Forced Inspirals” module of the Black Hole Perturbation Toolkit provides
tools for computing inspirals with either the full self-force or NIT equations of motion

* This module’s self-force model involved a compact range of orbital configurations
(e < 0.2) to streamline distribution

* An interface between a broader library of self-
force data and the Toolkit module was developed

same waveform output, but the NIT inspiral is much faster

+ Future versions will include default data with the [l e, = 0.7
full range of orbital parameters (e < 0.75) -

L1 1 L 1 1 1 I I 1 1 I 1 L L L 1 1
5.248 x 10° 5.249 x 108 5.250 x 108 5.251x 108 5.252 x 108 5.253 x 108
t (seconds)

https://bhptoolkit.org/Fast Self-Forced Inspirals/



https://bhptoolkit.org/Fast_Self-Forced_Inspirals/

» Trajectories are post-processed to generate their associated waveforms

» Different waveform methods are compared by inputting identical self-forced trajectories

—T€U|<O|S|<y p=6.5M, e=0.5, a=0.5M, 8 ~90(deg) — |<|Udg€

» Eccentric waveform comparisons exist |
for fixed snapshots (no radiation reaction): §

Babak, Fang, Gair, Glampedakis & Hughes (2008)

1500

 Advancements of this work: compare waveforms during entire self-forced inspiral, higher e

» Possible waveform generation methods to compare:

—

time-domain Teukolsk none
evolving Teukolsky snapshots geodesic for past worldline Warburton, Osburn & Evans (2017)
kludge weak field (maybe slow motion)




Kludge wavetorms vs. Teukolsky wavetorms

. 1
General waveform description: | Ay =i hx = ;2 Hym (8) _2Yim (6, )

Kludge waveforms: Evolving Teukolsky snapshots:
Artificially map inspiral to Minkowski Solve Teukolsky equation for a dense set of
spacetime and solve wave equation geodeiscs and interpolate Fourier coefficients

kludge (t) . _
H;‘euk(t) Cosin p—i(nQr+2Q4)t
4y\/§ Zl‘l’p( — 4l Qp + 1 ( p(2<pp + I <pp))) / l
e/

The Teukolsky coefficients and fundamental
frequencies evolve during the inspiral, use
interpolant to update their values

The kludge waveform depends only on the instantaneous
position (2nd derivative of quadrupole moment)
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1
hy —ihy = ;z Hlm(t) —Zylm(e»go)
Im

* LISA data analysis is performed by representing i
the waveform in the frequency domain: Ay, (f) = f H, ,(t) e27t 4t

* The overlap integral is weighted with the
LISA sensitivity, use approximate sensitivity
curve with spectral density S

df

© ab*+ba
overlap = (al|b) = f S

* Use the fractional overlap with Teukolsky
waveforms to benchmark kludge waveforms

kludge Teuk 2L e R TT R L L
<H2’2 HZ,Z > 10 0.001 0.010 0.100
— f (Hz)
kludge|,,;kludge Teuk Teuk , ,
\/<H2,2 Hz,z > <H2,2 ‘Hz,z > Robson, Cornish & Liu 2018



» Test reliability of kludges as a function < pykludge
of eccentricity 2,2

Teuk
H2,2 >

kludge| ;;kludge Teuk Teuk
» Kludges work very well for low \/ <H2,2 Hy2 ><H2'2 ‘HZ:Z >
eccentricities, not as well for high e
(preliminary)
LISA template consequences vs
— ~15% decrease in LISA event rate

— ~30% decrease in LISA event rate
Babak, Fang, Gair, Glampedakis & Hughes (2008)

* These mis-matches should be amplified for
prograde inspirals into Kerr black holes!
(venture deeper into the strong field regime)
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trajectory at high resolution (~n' samples) orint the Fourier

coefficients for that
But the precomputed Teukolsky frequency

waveform data is already stored in Y avefom spesgograi
the frequency domain! f f f f

Speed cost: must re-sample inverse NIT HTEUk (1) = z Coai o—i(nQr+20,)t
n

for each frequency bin, find the time when
every harmonic intersects that frequency
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This strategy should circumvent the
inverse NIT and avoid high
resolution re-sampling

LISA data analysis already | .
occurs [n the frequency domaln[ 500 600 700 800 900

t (days)
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Conclusions and future work

* LISA templates require waveforms with highly accurate phases: need self-forced inspirals
* LISA data analysis also requires high speed: optimize equations of motion with NIT
* Investigation:

Conclusion: Yes for low eccentricity, probably need Teukolsky for high eccentricity

* Challenge:

Solution: Calculate waveforms directly in the frequency domain?

 Future work:
Develop more general inspiral models (2"? order self-force, Kerr self-force, etc.)
Pair these more general inspiral models with interpolated Kerr Teukolsky waveforms



