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Motivation behind this talk

GCARRAICOMMUNITY + We only have ~15 years

until LISA launches

¢ Second-order calculations
are complex but we now
have a much better
understanding of them

¢ This talk will give a
practical guide to second-
order calculations

» We will point out areas
where contributions are
needed
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- Whrite metric as perturbative
| expansion about a background

8 = ggy + eh;y + ezh/f + O(ed)
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’ Substritute expansion into Einstein
| equation
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Gravitational Self-force

e =m/M Write metric as perturbative

| expansion about a background

8 = ggy + eh;y + e2h,3 + O(ed)

v

| Substitute expansion into Einstein
| equation

Image credit: A. Pound

G,lgl=38rT,
Expanding out,
Golgl = G,,[8° + €GLIh" + € (GLINI + G, 1) + O (€7)

Obtain equations at each order in €, which we can solve for nl, h2,, ...,

'uy! MUV )

along with equations of motion for a worldline. Goal: compute &), n2,, z*
Dz

_ o 2o
- = el + €7k,




Why go to second-order?

On an inspiral timescale t ~ M4/m, the phase of the gravitational
wave has an expansion (excluding resonances):
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Why go to second-order?

On an inspiral timescale t ~ M4/m, the phase of the gravitational
wave has an expansion (excluding resonances):

¢d =€ g+ ¢, + O(e)
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Why go to second-order?

On an inspiral timescale t ~ M4/m, the phase of the gravitational
wave has an expansion (excluding resonances):

¢ = €_+ O(¢)

/ Post-Adiabatic order \‘
w Three contributions: \
From the orbit averaged piece

| ¢ -irst-order, oscillatory dissipative
of first-order self-force (F7) O F1a<diss,osc>
e First-order conservative self-

(F') can be related to the torce Facons)
fluxes, thus avoiding a local l .

L e Second-order orbit averaged
calculation of the self-force self-force (F9)

- 2

Good enough for detection and Needed for precision tests of GR
rough parameter estimation for

@rophysics of EMRIs j @tennal application to IMRIs j




Non-linear perturbation theory

Expand Einstein tensor and make regular/singular split in second-
order perturbation

Gulgl = G, [g%) + €GLIn'T + € (GLIN) + G, h'T) + 0 (&)

h2 — hR2 i hPZ



Non-linear perturbation theory

Expand Einstein tensor and make regular/singular split in second-
order perturbation

Gulgl = G, [g%) + €GLIn'T + € (GLIN) + G, h'T) + 0 (&)

h2 — hR2 i hPZ

Solve order-by-order in € to get:
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Non-linear perturbation theory

Expand Einstein tensor and make regular/singular split in second-
order perturbation

Gulgl = G, [g%) + €GLIn'T + € (GLIN) + G, h'T) + 0 (&)
h2 — hRZ i hP2

Solve order-by-order in € to get:

ht=(T"
hR2 =(G2[h1,h1])— hP2

— atz — 0? - Non-compact Crux:

%
: - Diverges at the particle - Pound (2012)"
- Gralla (2012)

Usual point particle source

*Pound, Phys. Rev. Lett. 109, 051101 (2012)



Non-linear perturbation theory

Expand Einstein tensor and make regular/singular split in second-
order perturbation

Gulgl = G, [g%) + €GLIn'T + € (GLIN) + G, h'T) + 0 (&)
h2 — hRZ i hP2

Solve order-by-order in € to get:

ht=(T"
hR2 =(G2[h1,hl])— hP2

— atz — 32* - Non-compact Crux:
r

- Diverges at the particle - Pound (2012)"
- Gralla (2012)

Usual point particle source

Equations of motion take the form:

D?z#

dt

— GFIM[th] + €2F2,u[hR2]

*Pound, Phys. Rev. Lett. 109, 051101 (2012)



Two-timescale expansion

Solving field equations in the time-domain is a no-go as we do not
vet know how to do this at first-order! (monopole/dipole
instability)
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Two-timescale expansion

Solving field equations in the time-domain is a no-go as we do not
vet know how to do this at first-order! (monopole/dipole
instability)

Instead make use of the Liow = f = et Liast = @y
separation of timescales:

Expand the box operator:

General form of the two-timescale expanded field equations:

g 0 pl = T A

0 hRZ G2[h1 h ] _ OhPZ _ lhl
\_ “ @ W,

Adam will discuss the two-timescale expanded EoM



First results: monopole of 2nd-order metric perturbation
Particle on circular orbit of Schwarzschild black hole

(2)ret/R
h 300




First application: Gravitational binding energy

Epina = Mg — Mgy — m)/
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. : . . C Total energy in the spacetime, defined
First application: Gravitational binding energy s Bgzdi masch)m u=const slice

Perturbed mass of we match to at large radius

larger black hole, defined
as the irreducible mass Ebind = ——
computed from the area of
the apparent horizon

Expanding out for small mass ratio

5M(1 — 6y)y
3(1 — 3y)3/2
We directly compute each of these quantities from the monopole

piece of the first and second order metric perturbations on the
horizon and at scri.

Egr = M}? (2) gt &) — 1+

2 = tim £ (72004 120 v, I
= (1 - 3y)

X - I -2y
2 o 1 2(7) L) 4 ptORLO) —
M, rl_lg}w <h + 05k + hy oo ) &o(y) (1 — 3y)12



First application: Gravitational binding energy

Binding energy can also be computed from the first-law of binary
black hole mechanics using first-order self-force data*

OM +Q0J = z10mq + 290mo

Rewriting this in terms of binding energy as a function of y, we get

y S—12y
6 (1 — 3y)3/2

Just as the energy balance law relates second-order fluxes to the
first-order local SF, the FLBM relates a binary’s second-order

energy, as defined at infinity, to the first-order, local Detweliler
redshift zsr.

1 y dZSF
E;;t law _ ZSF(y)

—1++/T=3y 4
> 3 dy VI-3y

Important to note that the first-law assumes a conservative, helically
symmetric, asymptotically flat spacetime.

*Le Tiec, Barausse, Buonanno, Phys. Rev. Lett.108:131103 (2012)



First application: Gravitational binding energy
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First application: Gravitational binding energy
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Non-linear perturbation theory

0 hl — Tl
0 hRZ — GZ[hl hl] _

071,P2
a)h o




Non-linear perturbation theory

0 hl — Tl
0 hR2 — G2[h1 hl] . O_ lhl

f),

N

-

- Constructed via matched expansionsx
. Compact: only defined near worldlineJ




Non-linear perturbation theory

0 pl = T!

o h=Golh', h'] -

-

'h

N

"~ Constructed via matched expansions\

. Compact: only defined near worldlineJ

( Derivatives w.r.t. slow time:
. dh!

~1
dh'  dry dh! dE o
df df di"o di’o di’o

\~ Non-compact
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iInear perturbation theory

0 pl = T!

o h=Golh', h'] -

N

- Constructed via matched expansionsx
. Compact: only defined near worldlineJ

-

lhl]

( Derivatives w.r.t. slow time:

L, We need codes that
calculate the

derivative of h1 w.r.t.

the orbital elements

—1
dh'  dry dh! dE fany
df df di"() di’o di"()
\~ Non-compact )




Non-|

iInear perturbation theory

0 pl = T!

o h=Golh', h'] -

N

- Constructed via matched expemsionsN
. Compact: only defined near worldline)

-G

( Derivatives w.r.t. slow time:

L, We need codes that

/ calculate the

—1
1 1 1
ﬂ ~ dro dh ~ d_E 3 derivative of h! w.rt.
dr dt dr, dry dr, the orbital elements
\~ Non-compact )

[ Apply retarded boundary conditions J
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Non-linear perturbation theory

0 hl — Tl
S)hRZ — [Gg)[hl,hl]J_

~

071,P2
a)h R

11
N

2hu(oc;ﬁ)v — hagyuw — hul/;aﬁ)
%huﬁ;y(hua;v — hva;u)

explicitly  G2[h,h] =— 30" (
given by: LW R
- %EW;V(QhM(a;B) — hagiu)

Challenges constructing this term:

- divergent at the particle: as (Ar)™ in Lorenz gauge

- mode coupling with finite number of first-order modes
- numerical noise near the horizon
- decays too slowly at the horizon and infinity



Non-linear perturbation theory: behaviour at the particle

mode decomposition

h' ~ (Ar)™
= h, ~const+Ar+...

Fip(T) = hz’;i% 0) — hjyy (rp)



Non-linear perturbation theory: behaviour at the particle

mode decomposition

ht ~ (Ar)™" Mode-sum regularization
= h, ~const+Ar+... l

hyy (ro) = W< (rg) — By, (1)




Non-linear perturbation theory: behaviour at the particle

mode decomposition

h' ~ (Ar)™"  Mode-sum regularization h2 ~ (Ar)2

=4 hl}ﬂ~const+Ar+... l == hl%,,l~const+log(Ar)+...

1 _ p,retl __ 1Pl
h,(ro) = hy,,~(rp) = hy,,, (p) Must use effective-source regularization




Non-linear perturbation theory: behaviour at the particle

mode decomposition

h' ~ (Ar)~!

:'hz

~ const+ Ar +.

[h (”0) hretl(ro) hPl(rO) )

adimensionalized fields

Mode-sum regularization

h? ~ (Ar)~2
=> h? ~ const+ log(Ar) + ...

Must use effective-source regularization

3!

—_ N

o

iy
LY

_____ . 5(272)ret/8 . ﬁ272)res/8

100
80}
60|
40t

20}

—1)res
T h22

3) 10

r/M

i | \
50 100

Wardell, NW, Phys. Rev. D 92, 084019 (2015)



Non-linear perturbation theory: mode coupling

G/%y[hla hl] — Z Gilm(r; ro)e—imQthlm(r QA)

ilm

''m'i"l"m" 1
llm Z gllm llm’ hz”l”m”]

i'l'm’
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Non-linear perturbation theory: mode coupling

G/%y[hl,hl] — Z Gilm(r; 1’0)6 lmQtYllWL(r QA)

ilm

l/l/m/l'//l//m
llm Z gllm [h /l/ /, //l// //]
/l/ /

l‘//l//m//

We only have a finite number of
numerically computed (I,m)-modes of h'
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J. Miller, B. Wardell, A. Pound, Phys. Rev. D 94, 104018 (2016)



Non-linear perturbation theory: mode coupling

G/fy[hl, hl] — Z Gilm(r; ro)e—imQtYllm(r QA)

ilm 0.35F
gl/l, //l//m//[h hl ] 0.30 _
Gl = ilm i'I'm i m
/l/ /
l‘//l//m// 0.25 i

We only have a finite number of

numerically computed (I,m)-modes of A’ 0.20 |

Solution: A 015 |
hl — th + hPl |

0.10

Gz[hl, hl] =[G2[hpl, hPl]) 0.05 |

+2G3 [P, hBY + GARRL, hR1Y ) 5ol

Can tackle this term analytically

0.05
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0.02

0.01 ¢

-16 =12 =08 =04

0.00 .
0.4 0.8

0.05
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0.03
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0.01

[ max — 44

L lmax = 36

1.2

1.6

-5

-4 -3 -2 -1 0
Ar

(but have to use exact mode decomposition of h”? for other terms done using mode coupling - no shortcuts)

o I

J. Miller, B. Wardell, A. Pound, Phys. Rev. D 94, 104018 (2016)



Non-linear perturbation theory

effective source near the worldline

Second order source

1000

10

0.100

0.001

Second order source for i=1, 1=0, m=0

—

_\\ -
- G2[hP!, hP1]
B hP2
o GZ[hPl hPl] . hPZ
4
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smdnmnadlanmm welilhh M s A1 nvan DAL A 2 dncenn~n AP

The equations of motion of a point particle i
a certain regularized self-field. Two of the leadi A pplying the effective-source approach to frequency-domain self-force calculations:

the mode-sum and effective-source approaches. Lorenz-gauge gravitational perturbations
ation schemes by generalizing traditional frequ
effective-source techniques. For a toy scalar-fi

1,2 ; 3,2
puncture field from which the regularized resi Barry Wardell”“ and Niels Warburton

! Department of Astronomy, Cornell University, Ithaca, NY 14853, USA
28chool of Mathematical Sciences and Complex € Adaptive Systems Laboratory,
University College Dublin, Belfield, Dublin 4, Ireland
SMIT Kavli Institute for Astrophysics and Space Research,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA

With a view to developing a formalism that will be applicable at second perturbative order, we
devise a new practical scheme for computing the gravitational self-force experienced by a point mass
moving in a curved background spacetime. Our method works in the frequency domain and employs
the effective-source approach, in which a distributional source for the retarded metric perturbation
is replaced with an effective source for a certain regularized self-field. A key ingredient of the
calculation is the analytic determination of an appropriate puncture field from which the effective
sonrce and reenlarized residual field can be calenlated. Tn addition to its annlication in onr effective-
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Applying the effective-source approach to frequency-domain self-force cal

Niels Warburton! and Barry Wardell? !

1School of Mathematical Sciences and Complex & Adaptive Systems Laboratory,
University College Dublin, Belfield, Dublin 4, Ireland
2 Department of Astronomy, Cornell University, Ithaca, NY 14853, USA
(Dated: 28th October 2014)
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Second-order self-force computations, which will be essential in modeling extreme-mass-ratio in-
spirals, involve two major new difficulties that were not present at first order. One is the problem
of large scales, discussed in [Phys. Rev. D 92, 104047 (2015)]. Here we discuss the second diffi-
culty, which occurs instead on small scales: if we expand the field equations in spherical harmonics,
then because the first-order field contains a singularity, we require an arbitrarily large number of
Barry Wardel first-order modes to accurately compute even a single second-order mode. This is a generic feature
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Lorenz-gauge g

With a view to developing a formalism that will be applicable at second perturbative order, we
devise a new practical scheme for computing the gravitational self-force experienced by a point mass
moving in a curved background spacetime. Our method works in the frequency domain and employs
the effective-source approach, in which a distributional source for the retarded metric perturbation
is replaced with an effective source for a certain regularized self-field. A key ingredient of the
calculation is the analytic determination of an appropriate puncture field from which the effective
sonrce and reenlarized residual field can be calenlated. Tn addition to its annlication in onr effective-
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due to its gravitational self-force. Because the self-force is small, one can often approximate the

lan
t punctUre fo motion as geodesic. However, it is well known that self-force effects accumulate over time, making
I Sec
or.

the geodesic approximation fail on long timescales. It is less well known that this failure at large
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Second-order self-force computations, which will be essential in modeling extreme-mass-ratio in-

spirals, involve two major new difficulties that were not present at first order. One is the problem
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of large scales, discussed in [Phys. Rev. D 92, 104047 (2015)]. Here we discuss the second diffi-
culty, which occurs instead on small scales: if we expand the field equations in spherical harmonics,

then because the first-order field contains a singularity, we require an arbitrarily large number of
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With a view to developing a formalism that will be applicable at second perturbative order, we
devise a new practical scheme for computing the gravitational self-force experienced by a point mass
moving in a curved background spacetime. Our method works in the frequency domain and employs
the effective-source approach, in which a distributional source for the retarded metric perturbation
is replaced with an effective source for a certain regularized self-field. A key ingredient of the
calculation is the analytic determination of an appropriate puncture field from which the effective
sonrce and reenlarized residual field can be calenlated. Tn addition to its annlication in onr effective-
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The gravitational self-force accelerates an object away from geodesic motion, as it radiates en-
ergy away through gravitational waves. Second-order self-force calculations are crucial for accurate
models of gravitational waves ” ‘ ot ected to be detected by LISA.
A computation of the second- . ‘equires knowledge of how the
inspiral of the small object evc | n p re p a rat | O n oject evolves slowly - self-force
effects are substantial only ovi: vie sopiian vimcovase uu uogugioe during a single orbit. A tech-
nique for describing the inspiral accommodating both short-term and long-term influences is the
two timescale expansion, using a fast time and a slow time variable to characterize the two different
timescales.
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Second-order self-force computations, which will be essential in modeling extreme-mass-ratio in-
spirals, involve two major new difficulties that were not present at first order. One is the problem
of large scales, discussed in [Phys. Rev. D 92, 104047 (2015)]. Here we discuss the second diffi-
culty, which occurs instead on small scales: if we expand the field equations in spherical harmonics,
then because the first-order field contains a singularity, we require an arbitrarily large number of
first-order modes to accurately compute even a single second-order mode. This is a generic feature
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With a view to developing a formalism that will be applicable at second perturbative order, we
devise a new practical scheme for computing the gravitational self-force experienced by a point mass
moving in a curved background spacetime. Our method works in the frequency domain and employs
the effective-source approach, in which a distributional source for the retarded metric perturbation
is replaced with an effective source for a certain regularized self-field. A key ingredient of the
calculation is the analytic determination of an appropriate puncture field from which the effective
sonrce and reenlarized residual field can be calenlated. Tn addition to its annlication in onr effective-
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Second-order self-force computations, which will be essential in modeling extreme-mass-ratio in-
spirals, involve two major new difficulties that were not present at first order. One is the problem
of large scales, discussed in [Phys. Rev. D 92, 104047 (2015)]. Here we discuss the second diffi-
culty, which occurs instead on small scales: if we expand the field equations in spherical harmonics,
then because the first-order field contains a singularity, we require an arbitrarily large number of
first-order modes to accurately compute even a single second-order mode. This is a generic feature
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With a view to developing a formalism that will be applicable at second perturbative order, we
devise a new practical scheme for computing the gravitational self-force experienced by a point mass
moving in a curved background spacetime. Our method works in the frequency domain and employs
the effective-source approach, in which a distributional source for the retarded metric perturbation
is replaced with an effective source for a certain regularized self-field. A key ingredient of the
calculation is the analytic determination of an appropriate puncture field from which the effective
sonrce and reenlarized residual field can be calenlated. Tn addition to its annlication in onr effective-
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Puncture
Basic idea

S
m
obtain the puncture . .
: inner region
from local solution to (s ~m)
EFE in this region
buffer
region
external universe (s ~ M)




Puncture
Form of puncture

m In most gauges, the puncture has the form
p1_Mm 0
hNV ~ ; + O(S )

2 R1
pP2 L mh
pr T2

m A2 is available in Lorenz gauge, in arbitrary spacetime, through
order s!, in covariant form [Pound and Miller 2014]

m Also available, in less ready-to-use form, in “P smooth" gauges
[Gralla 2012] and “highly regular” gauges [Pound 2017]



Puncture
Expansion of worldline

The worldline z# is where the puncture diverges
Quasicircular orbit: z% = (t,7,(t,€),m/2,0,(t,€)), where

rp=ro(t)+eri(t)+...

d - -
op =Q=0Qo()+en (@) +...
dt
m Plug expansion into the puncture:
5hP1 5hP1 (5hP1
= hP2 hP2 . Q
T, e, 0 e

m The two-timescale puncture is also available in covariant form for
generic bound orbits



Puncture
Demonstration in Lorenz gauge

For quasicircular orbits in Schwarzschild,

hffm ~m? log|r —ro|+ (mhR1 +ry+70)|r—ro]
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Puncture
Demonstration in Lorenz gauge

For quasicircular orbits in Schwarzschild,

hP2

i ™~ m210g|r—r0\ —|—(mhR1 +ry+70)|r—ro]

10?

1078
10
107 o0k T
0.001
10718 6 7 8 9 10
16 0.61 1‘0 164
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Puncture
Extension to other gauges or variables

m Almost all calculations of first-order self-force have been built on
Lorenz-gauge hﬁ}, even if they calculate the retarded field in a
different gauge

m Can do the same at second order:
» work in locally Lorenz gauge: hfg in Lorenz, hfg in whatever's
convenient
» transform from hfff’Lor to some desired gauge

» calculate punctures for Teukolsky (or Regge-Wheeler,
Zerilli-Moncrief, etc.) variables: 2 = ¢[pF%LoT]
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% derivatives

NS = G

with retarded boundary conditions




Computing parametric derivative of '

] Dihi} ~ 8fhi + thi

® can convert to derivatives wrt parameters: e.g.,

hiy () = hl, (ro(f),6M(F),6())
drg doM déJ

= Oihl = ﬁamh; + Famhjj + 7

ds.1he,



Computing parametric derivative of '

] Dihi} ~ 8fhi + thi

® can convert to derivatives wrt parameters: e.g.,

hiy () = hl, (ro(f),6M(F),6())

M
SO AT

_- 1
T di d Os.1hay

m to find O, hl, differentiate OO AL =T wrt r¢:

Oro (OLRL) = 0y, T}
=000 hl) = 0y, T — (0,021}

70w o w

m solve for 8r0h01J with your favorite frequency-domain method



£ derivatives
Dependence on choice of slow time

constant-et constant-ew
slice slice
+iwr®
e . Alro .
hl ~ near bd'ries hl ~ (o) near bd'ries
. ; * /
. i r*eTiwr NP A (TO)
= 87'0 hw ~ f roltw ™ r



% derivatives

ration in Lorenz gauge
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% derivatives
Extension to other gauges and variables

m Exactly the same idea applies

m e.g., two-timescale expansion of Teukolsky (or Zerilli-Moncrief, etc.)
equation,
O0w8? = Sulh', W1 = D590% — Oy,
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(With retarded boundary conditionsJ




BCs

M atChed eXpa nSionS [Pound, Moxon, Flanagan, Hinderer, Yamada, Isoyama, Tanaka]

multiscale
expansion
in "near
zone"

"near- post-
horizon Minkgws_ki
zone" expansion in
"far zone"

m We want to impose retarded
BCs on full, physical metric
perturbation

m This does not trivially imply
simple BCs for two-timescale
fields because the two-timescale
expansion breaks down near
horizon and infinity

m To find BCs for two-timescale fields, obtain other (time-domain)

approximations near s+ and £t



BCs

Boundary conditions

Use post-Minkowski expansion near .# 1 and a near-horizon
expansion near JZ+

m Obtain solutions by using leading-order retarded (time domain)
Green's functions

m post-Minkowski solution looks like

pPM _ pP.PM | pR.PM

hP-PM — particular solution, K%M = outgoing wave

Analogous near horizon



BCs

Boundary punctures

m BC for two-timescale solution hT7 is FZ[hTT] = NZ[hP'M]

m To enforce BC, use NZ[h7>F"M] as a puncture at large r, impose
standard outgoing, retarded BC on residual field

hR,TT _ hTT _ NZ[hP’PM]

m Numerically computed KT determines K™% FM

m Analogous near horizon



BCs

Demonstration in Lorenz gauge
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Demonstration in Lorenz gauge
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BCs

Extension to other gauges and variables

m The boundary punctures may not be strictly necessary in some cases
> nonstationary modes with @ as slow time
» in “nicer” gauges
® When needed, punctures can be obtained from Lorenz-gauge
punctures
— or directly, using same methods as in Lorenz gauge (obtaining
approximate solutions in time domain near boundaries)



Evolution
Reminder: quasicircular orbits

rp =70(f) +eri(f) +O(e?)
Q= Q1) +eQ (i) +O0(?)

¢p_/£2dt_f/ Qo+ e +...)dt

h ~ Z € i (F r)e~mer@y;

nlm

(wm =mQ)



Evolution
Reminder: governing equations

Or' =1t

DhR2 — GQ[hl,hl] _DhP2

D2zt
— =l E )
R m
Er
hPQ m2 mth
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Reminder: governing equations
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A = G ) - AL - L,
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Evolution
Reminder: governing equations

Onl =11
O%hS? = GZ[n' ' = O0hL? =00k,

Qo =/ M/r}

d’r‘() d ssr, R1
-~ 1 h
i [he]
O o [ [RS )+




Evolution
Reminder: governing equations

Onl =11

O%hS? = GZ[n' ' = O0hL? =00k,

Qo =/ M/r}

d’r‘() dss R1
7 S
D oc R+
d?“l :

Y e

hEY ~ const. + |r —rq|

hE? ~ m2log |r —ro| + const. + (mh™ + 11 +70)|r — 70|



Evolution
Framework for computing a waveform

ro at time t ]—’[ QQ(T‘()) = M/7g
( [0k, = T(ro) —{ PR —

~—

[ ép(t) = [Qdt and 4D field h = 3, ehl, , (I,r)e= )y, ]

wmlm
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Framework for computing a waveform

ro at time £ ]—’[ Qo(ro) = \/M/r} ]_
[ O%hL = T (ro) ]—»[ &0 o filiss[nl] }

[ ép(t) = [Qdt and 4D field h = 3, ehl, , (I,r)e= )y, ]<—
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Evolution
Framework for computing a waveform

a[ ro at time £ ]—’[ Qo(ro) = /M/r}
[ O%hL = T (ro) ]—»[ &0 o filiss[nl]
a[ r1 at time ¢ ]—*[ Qi (r1) o 11 + fEors[RL]

(D282 ~ 2 1) = (0 +70e 12, }—— Ny

- — T

[ ép(t) = [Qdt and 4D field h = 3, ehl, , (I,r)e= )y, ]

wmlm
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Evolution
Framework for computing a waveform

a[ ro at time £ ]—’[ Qo(ro) = /M/r}
[ O%hL = T (ro) ]—»[ &0 o filiss[nl]
a[ r1 at time ¢ ]—*[ Qi (r1) o 11 + fEors[RL]

(D282 ~ 2 1) = (0 +70e 12, }—— Ny

i R e

[ ¢p(t) = [Qdt and 4D field h =3, ehl,  (E,r)emor)y, ]4—
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Evolution
Demonstration in Lorenz gauge

22 mode of adiabatic vs geodesic waveform
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Evolution
Notes on two-timescale framework

m solving the two-timescale equations gives us the post-adiabatic
inspiral and waveform as an output

m the two-timescale expansion is currently the main framework under

development for computing post-adiabatic waveforms — or for doing
any second-order calculations at all



Invitation
How you can contribute

m optimize numerical implementation of G2 [h!,h!]

m calculate explicit punctures 12 (in coordinates, decomposed into
harmonics) for generic orbits in Schwarzschild and Kerr

m calculate derivatives of h}, with respect to orbital parameters for
generic orbits

calculate explicit punctures at horizon and infinity for generic orbits
incorporate particle's spin into two-timescale framework
develop near-resonance expansions to transition across resonances

develop method of computing A} in Lorenz gauge in Kerr

develop tools for computing 12 (e.g., coupling formula

hi}lm — Swlm[hlahl})

m develop method of analytically calculating second-order quantities
using PN expansions



