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Our new Innovative Area (grant) has just started 

in summer 2017.

using gravitational waves
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Out Target
Giving a prescription how to predict 

the gravitational waveform from EMRIs, 
using black hole perturbation. 

Accurate and fast evaluation of 
GW phase evolution is especially important to 

compare the template with observations. 

So, we want to establish 
an economical way to compute

the orbital phase evolution 
taking into account the self-force. 



 self ,F   
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Particle’s 
trajectory

h~/r

Perturbation is everywhere small 
outside the world tube

“tube radius” >>  (mass of satellite)

Unavoidable ambiguity in the 
perturbed trajectory of O()

“Self-force is gauge dependent”

Source trajectory 

has unnecessary information.

While, “long term orbital evolution is 
gauge invariant”

There must be a concise description 
that keeps only the gauge invariant information

Gauge invariance
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Leading order wave form

   2        0        GWdE
O O

dt
   

dt

df


Energy balance argument is sufficient. 

dt

dE

dt

dE orbitGW 

Waveform         for quasi-circular orbits, for example. 

GW orbit
df dE dE

dt dfdt


     2 geodesic  OO
df

dEorbit 

leading order 
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We need to directly evaluate the self-force acting 

on the particle.

Radiation reaction for general orbits 

Radiation reaction to the Carter constant

Schwarzschild “constants of motion” E, Li⇔ Killing vector x

Conserved current for the field corresponding to Killing vector

exists.  

GWE E 

Kerr conserved quantities E, Lz⇔ Killing vector

Q ⇔ Killing vector×

In total, conservation law holds.  

 GW

GWE d t n

n x 

n
n uuKQ    0; nK

Killing tensor

  
x uE t



7

Canonical transformation to the action angle variables 

with the aid of constants of motion in the background:  

   0

1 1 1

2 2 2
ret S

S g u u d g u u d h u u dn n n

 n  n  n  


    

 0, , ,zP H E L Q  

interaction Hamiltonian   

      



  dJurdJruJtJJxW

r

rt ,~,~,

Generating function:

To obtain the self-forced motion, we just need to solve the geodesic 

equation on an appropriately regularized perturbed spacetime.

well-known for Kerr geodesic motion 
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Angle variables wa =O(h -1) (∝radiation reaction time) are  

gauge invariant in the context of long term evolution. 

allowing O(h ) gauge ambiguity, if not O (h DT ). 

Gauge invariance of the angular velocity
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where we introduce a single valued function with respect to x:
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Small variations of x and J are not amplified in w. 

∵

w a =<w a >=O(h0) should be invariant up to O(h )
.

: Mh 
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r

r r  w w  w  For resonant case

has physical meaning.

Under the time reversal, a resonant geodesic with 

Dw transforms into a resonant geodesics with Dw. 

holds for some integers r & q

Resonant orbits

0 0

r r

r rw w w w w 
    D    

w wD w wD
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d w

dt
w

D
 D

2d

dt

w
hw

D


Impact of the resonance on the phase evolution

: duration staying around resonance 1 1

rest O h w D 

If               for Dw  Dwc, 

 res Ow h wD 

 1

resw O h : overall phase error due to resonance

≠O(h0)

0
d

dt

wD


: extra frequency shift 

caused by passing through resonance

  2

c

d
O w w

dt

w
hw

D
 D  D

 
 cd w w

O
dt

w
D  D

 D

If  stays negative, 

resonance may persist for a long time. 

Oscillation period is much shorter 

than the radiation reaction time

(gravitational radiation reaction)

: Mh 
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adv""ret"" 

Radiation reaction to the action variables 

(constants of motion)

“retarded” field= “radiative” + ”symmetric”

2

adv""ret"" 

   int

( , )

, ;
ret S

w J

dJ H
d d G w J

d w w


 

 

  




 

  
      

 

regularization is 

unnecessary

can be replaced with           . aw iniw 
initial value 

   
ini

,
ret SdJ

d d G
d w
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, ,
rad sym S
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ini ini ini

1 1
, ,

2 2

sym S sym S

symd d G d d G H
w w w  

 
 

       
 




              
   

Simplification

Symmetric part

At the leading order in h =/M, only the radiative part determines  

the change of “constants of motion”, except for resonance orbits.
(Mino (2003)) 

Hsym after substitution ’  is independent of       for non-resonant case. ini

aw

0 0

1sym sym sym

r r r

H H Hw

w w w w

  D
  

  D D

Even for resonant case, Hsym depends on w only through Dw.

0 0

1sym sym symH H Hw

w w w w  

 D
 

  D D

0
sym symr

r

H H

w w




 

 
 

 

relation between Jr and J

.    .
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radiative part
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Fourier exp. w.r.t. w
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Non-resonant case

Orbital average implies that only contributions with k=k’ and 

n=n’ remain.  2
mkn

out out

lmkn lmknZ z Jw
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Resonant case

           0 0 0

r rk k w n n w N N k k w n n w w               

rN k n   rN k n    

Orbital average implies N=N’.

   rn n k k       0 0

r

rw w w

 D  

     rk k w n n w k k w        D
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mN
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lmknlm kn
Z z Jw


  ,mN m Nw w w 

Summation over k and n

that satisfy N=k +n r.

The formulas for       and        are analogous to those for        and        .  J rJ tJ J

r

r



w w  w  
same w for different k and n.
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• Full Hamiltonian H=H0+ Hint

H0 is a function of J only. 

First-law relation

1 1

2 2
g u u n

n  

   0 int int intlim 0
2T

H H H T H T
T

       
１

0
00

H
H J J

J



 



w


  


J are not mutually independent.
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Next Leading Order of h in waveform

   2        0        
dJ

O O
dt

 h h  

dw

d


w




Orbital frequencies:

Wave form is specified by 

dJd

dt J d

 




w w








     2 geodesic  O O
J





w
h h


  



leading order (O(h -1) phase)

linear perturbation

next leading order 

(O(1) phase) 

 
d

d


w

w




18

EOM)

Long term evolution

We separate the variables

   , IJ J J w     

 wJ ,

intdJ H

d w





 



   , Iw w w w     

 wJ  ,

    int

0

dw H
J

d J







  



:depends only on slow time 

:can rapidly oscillate 

but always remains small

We need to solve this equation 

to the second order

so that

 ,rI 
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Source orbit for       

is approximated by the osculating geodesic orbit:  

Linear perturbation)
     2

int

1

intint HHH

 
  n
n uuhH 1

1

int 

)~();( 00  JJosc        0 0 0 00
( ; ) ( )oscw w J     w     

 1

intdJ H

d w
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int intd J H H

d w w
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0

dw H
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d J J
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int1
, ,

w
J w H J 

    can be erased by the choice of gauge 

We decompose EOM as

for generic orbits, but such a  treatment is too native especially 

when we discuss some limiting cases, such as the circular limit, 

equatorial limit, and ISCO limit.   



1)

But one can show from the beginning 

2) When 

We can show the presence of a gauge in which
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The conservative self-force can be described by the effective Hamiltonian

Summary of the results obtained in arXiv:1612.02504)

     0

int

1

2
H J J 

 
                0 0 0 0

int 1

1 1
, ; ,

2 2
symsym

h u u G u z u zn

 n        

 1
int int1

: 0
2

a

a a w

H

J J
w

  
D    

  

det 0M 

The gauge transformation is constrained. 

gauge invariance of w

   1 02

int: :g g g g g

w

H H
J J M J

J J J J


 

  

   

w
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D      

    

1J

w   0gJ

w   0g g gJ J J J
J
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 w  w 


D   
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  0g gM J 

    w  D  

              0 0

int int

1
2 1 0

2
J J H J J J H J J

J

 

  



w w
  

D         
  

But                  can be proven, although the proof is more involved.0

 wD 



All the components which cannot be changed by gauge 

transformations can be shown to vanish from the beginning. 

(Proof for wr → 0 is given in our paper only for circular cases. )

if we require the scaling:                                 .
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Uniqueness of the effective Hamiltonian

     0

int

1

2
H J J 

0

0

rJ

J






Special care is required for some limiting cases:

new gauge invariant relation

min
min

r
r J

J




 


 


∞

   4

int intJ J 

0rw  marginally stable orbits

min min 0
r r

J
J J



 


  

 
  

Effective Hamiltonian that depends only on J is uniquely given by 

Here, the gauge dependence of J is allowed.                                   .

0

0

rJ

J
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Source orbit for       

is approximated by the osculating geodesic orbit:  

Linear perturbation)
     2

int

1

intint HHH

 
  n
n uuhH 1

1

int 

)~();( 00  JJosc       0 0 0 00
( ; ) ( )oscw w J          

 1

intdJ H
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d w w
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J
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  1 1

int int1
0,  0,  

w
J H J J  

 w      

We choose the gauge such that

We decompose EOM as

 1

int

Iw

dJ H

d w





 



 eff Jdw

d J
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Source for                           has two contributions:    

Second order perturbation)
     2

int

1

intint HHH

 
  n
n uuhH 2

2

int 
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0 0 0
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( ; ) : ( ) ( ; )
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w w w

J d
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1) Quadratic term of the first order metric perturbation “∂h ∂h”      

2) First order deviation of the source orbit from the osculating orbit

         1

0 0 0; : ;osc dJ
J J J J

d


          


D      
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differentiation with respect to the source orbit

   1 2,

int int
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dJ H H

d w w
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Drastic simplification may occur

 2

intdJ H

d w






 



Second order 

dissipative part
= Graviton 2-loop

From here on I just give a highly speculative argument.

x

x

x

w





3pt graviton 

vertex

retarded

propagator

x

x

x

w





radiative

propagator

ini

1

3 w





x

x

x

  x

x
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w





symmetric

propagator

x

x

x

w





2

x

x

x

w





2
0

particle 

trajectory
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Second order source must satisfy conservation             as a whole

x

x

x

w





sym

sym

rad

   
           

1 2 3
1 2 3

4

, , 1 2 3
ˆ , , ,x x x rad sym syma x x x x x

d d d d x

V G x x G x G x
w  

  

            

  


    



   

Tn
;n0

   
    symsym hhGT ,2particle

n
n

n
n 

necessary deviation from geodesic comes from 

symmetric contribution only.

x

x
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w
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rad
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,

rad
d d J G x

w J
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The "flux-balance formulae" that determine the averaged 

evolution of energy, angular momentum and Carter constant 

in terms of the averaged asymptotic partial wave fluxes for 

EMRIs in Kerr spacetime were first derived ~15 years ago. 
(Sago et al. 2005)

We here gave a new derivation of the flux formulae based 

on Hamiltonian dynamics of a self-forced particle motion 

using action-angle variables, which is much simpler than the 

previous one, and applies to the resonant inspirals without 

any complication. 

The conservative effect of the first order perturbation can be 

encapsulated in the effective Hamiltonian.

Formal discussion may provide some insight into the 

simplification of the next leading order calculation. 

Summary


