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Out Target

Giving a prescription how to predict
the gravitational waveform from EMRIs,
using black hole perturbation.

Accurate and fast evaluation of
GW phase evolution is especially important to
compare the template with observations.

So, we want to establish
an economical way to compute
the orbital phase evolution
taking into account the self—force.



~  Gauge Invariance

Particle’ s Perturbation is everywhere small
trajectory outside the world tube

“tube radius” >> 1 (mass of satellite)

Unavoidable ambiguity in the
perturbed trajectory of (1)

h~u/1

“Self-force is gauge dependent”

,Ll . .
self (T, 7Q has unnecessary information.

Source trajectory

. 11 ' . .
While, "long term orbital evolution is
P . 7
gauge nvariant

There must be a concise description

that keeps only the gauge invariant information
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Leading order wave form

Energy balance argument is sufficient.

dEGW _ dEorbit
dt dt
df . .
Waveform = Efor guasi-circular orbits, for example.
df _ dEGW/dEorbit
. adt df leading order
dE
d(tBW = 0 +O(,u)+O(,u2)
dEorbit _

dfF (geodesic )+O( )+ O(ﬂz)



Radiation reaction for general orbits

& Radiation reaction to the Carter constant

Schwarzschild “constants of motion” E, L; & Killing vector &

_ M
E= _g(t)uﬂ
Conserved current for the field corresponding to Killing vector
i GW) &v
exists. Epy = J‘dzutiv )5

E = —EGW In total, conservation law holds.

Kerr conserved quantities E, L, < Killing vector
Q 2 Killing vector

Q= Kﬂvuﬂuv K(uv,p) =0
Killing tensor

We need to directly evaluate the self-force acting
on the particle. 6




To obtain the self-forced motion, we just need to solve the geodesic
equation on an appropriately regularized perturbed spacetime.

1¢ W 1¢
S :E-[gﬂ uﬂuvdrzzjg{é))uﬂuvdr jhret 6U,U,d7

H, interaction Hamiltonian H;,

Canonical transformation to the action angle variables
with the aid of constants of motion in the background:

P, = { Hy,—E, Z’Q}

Generating function:

r 0
W(x,3)=Jt+J,6+[ T, 3)dr+[ T,(¢,J)de
4Ar

well-known for Kerr geodesic motion
3, =$a (r,PYr 3, =§ d,(0.P)e
oW oW
U =—— Wa e
booox” ad,
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Gauge Invariance of the angular velocity

Angle variables w2 =0O(# 1) (ecradiation reaction time) are

gauge invariant in the context of long term evolution.
allowing O(n) gauge ambiguity, if not O (n AT).

n=pu/M

> 0?=<W?>=0(7) should be invariant up to O(7)

/@ W(x, )= 3t + 3,0+ [ T.(r, 3 )+ [T, (0, e \

3, =fa, (r,a)r, I,={0,(0, 34

W(x,J)=W(x,J)+n,J, +n,J,
where we introduce a single valued function with respect to x:

W(x,d)=dt+J,6+[ G, rJ)dr+j (0, 33e

W,:6W(X,J)28VV(X,J)+nI (1=r.6) Wizﬁw(x,J)_(’?W(x,J) (=t.9)

aJ, 8J, 8, &),
Small variations of x and J are not amplified in w.
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Resonant orbits

For resonant case o=w,/f. =w,/p,
holds for some integers g & f,

aw=w’/B, —W'[ B =w; /B, —W; /B, has physical meaning.

A

r

T I
X N

\_Y_J

(A AR

AW/ @

T

\_YJ
Aw/ @

Under the time reversal, a resonant geodesic with
Aw transforms into a resonant geodesics with —Aw.



Impact of the resonance on the phase evolution
(gravitational radiation reaction)

dAw dAw 5
—~Aw ~ N = /M
it di n n=u/

:>Atres = O( 77_1 a)_l) . duration staying around resonance

:> Aw,, = (\/; a)) . extra frequency shift

caused by passing through resonance

:> OW = (, /771) . overall phase error due to resonance
res

Z0(1°)
If dAw —0 for AW = AW Oscillation period is much shorter
dt ¢ than the radiation reaction time
a 2
d (Aw—Aw d*(Aw—Aw,
( - y =0(Aw) :> ( 0 ) ~ B’ (Aw—Aw,)
dAw If B stays negative,

resonance may persist for a long time.
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Radiation reaction to the action variables
(constants of motion)

“retarded” field= “radiative” + "symmetric”

"retll_"advll llretll+lladvll
2

regularization is
unnecessary

(9)- G oo )|

o/ow*can be replaced with g/aw?. .

initial value
< >Ddrfdr ,yﬂw

{jdfjdf G } {Jdr!dr

(w,J)=y"=y




Simplification
Symmetric part
Jarfar S o] <3 [facforsim ] <Lt

V=Y
after substitution ¥ =y is independent of w;, for non-resonant case.

ni ni
sym

At the leading order in 7 =4/M, only the radiative part determines

the change of “constants of motion”, except for resonance orbits.
(Mino (2003))

Even for resonant case, H,,, depends on w# only through Aw.

sym
a<Hsym> aAWa<Hsym>_ 1 a<Hsym>

oW oW oAw B oAw r<5Hsym> 9<8Hsym>_

0 0 E> )i — )+ p =0
a<Hsym>:aAW<Hsym>: 1 <Hsym> ow ow

owg  owg oAw B oAw relation between J, and J,
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radiative part
{ZZ‘:&@‘ZS&( u) + 2z toungytomm (x U)}+(C-C-)

rad _[ d C()Z pwlm

(Dout/down (X U) ZTT LPout/down (x)u”u‘” Zout/down _ J'd CDout/down( )

wlm v =2 © wlm
o wlm

\Pout/down (X) Rout/down (r) Sa;lm (9’ ¢) —|a)t

wlm wlm

Z;))lljrtrfdown _ J‘d (Dz)ultn/]down( )
1 _ H ou a(Dz)ultn( ) 0 own aCDS)OIVn\:n (X U)
<Ja>——jda)§ yroe {zw,:n< - + - Z 8o o~ +(cc.)
Fourier exp. w.r.t. w q)z)ultn/]down W, J Z ;lllr;/srfwn (‘”W —mw” —kw” ”W)

|:> ZOUt/dOWh d out/dOWn (()W —mw? — kW nW)
wIm @ Imkn

out/down [ kan )
= ZZ a) A

Imkn

/4

_ o
where @ n = mQ‘” +kQ? + nQr, Xmkn = a)mknW (mWC()p + I(\NO + nW(; )’

t t
ZI?:kn =271 ¢;:kn|mkn ( )
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] H ou a(DZ)Utm (X,U & own aq)g)ovr\;n X,u
<Ja>=—IdeM{zw:m< inl )>+p zdm< n UL (e

wlm

(Dout/down out/down (a)w —mw? —kw? nw)
wlm Imkn

out/down __ out/down | Xm
me - Zzlmkn « 5 C{) a)mkn)
with
=mQ’ +kQ’ +nQ",

— 1) o r
i = OrgaWp — (MWE -+ k) + 1wy ),

a(DOUt
= [dozZ agw( u)
Imkn ac;::nlmkn (J) _i(wmknWt_qu)_kwe_n,Wr)
k,n k',n’ 4
—'ZZZ.%!‘in( ()07
k,n k',n’ v

&, = (O n" k', m), 14
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8(DOUt ) ] 5 ol ou i((k'=k)W? +(n"—n)w"
_‘-da) 2):1;1 ag\WN(aX U) - Izzzlmlin (ga¢a)minlmk’n' (‘J ))e ((k k) ( ) )
k,n k',n’

Non-resonant case

Orbital average implies that only contributions with k=k’and

e

n=n’remain. 7 out

= 272-2 ¢ac;:inlmkn (‘] ) ,

out . Imkn
|:> Idwng:n<8(lem(X’U)>_l Zout 2

aWa o 2717 k”nlga Imk'n’ |
The formulas for(J,)and (J,) are analogous to those for (J;) and (J,).

Resonant case same o for different k and n. P :
N=kB’+nB" N'=k'8’+n'p' @=o'|B) = |B,

(k'=k)w’ +(n"—=n)w" =(N"=N)@(r—7,)+(k'=k)wj +(n"—n)w;

Orbital average implies N=N".

= ("=n)B =—(kK'-k) "’ AW =W /B, — Wi / B,

, , i , Summation over k and n
(K= k)w”+ (' =m)w’ > (k'—k) S"Aw that satisfy N=kg%+np".

oD (x,u i & 5 o _ o
Ida)zgljrtn = (a ) =— Zl?r?(tkn)e_lkﬂ 2 gazl?r:j(tk’n')elkﬁ AW
oW 2L \— ‘ (€,

Zoti) = 27250 i (3) 0

@ =M’ + N,
4 15




First-law relation

TP 1 1
* Full Hamiltonian H=Hy+ H;y =5 0,,u°0" =—>

H, Is a function of J_, only.

(i) = =(F) = lim [ iy (T) = Hio (-T)] -

T o0
N PP
0=(F) =2 (1, ) ar (3,

<ja>are not mutually independent.

0
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Next Leading Order of 7 In waveform

Orbital frequencies:

. aw*
W =
dr
. . do”
Wave form is specified by — (o)
dr
do* ow* dJ,
dt - 5Jﬂ dr linear perturl?ation
leading order (O(7 ") phase)
dJ
B _ 2
W = 0 +O(77)+O(77 )
ow” : 2
~— = (geodesic) +0(n)+0(n°)

B
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Long term evolution

EOM)
dJ, — 'gt <: We need to solve this equation
dr ~ ow to the second order
dw? oH

int

ar o) 5

We separate the variables
J,=3,(8)+583,(Fw')
W =W (7)+ owe (7,w') (1=r.0)
so that

(J_,V—v) :depends only on slow time

(5} , aN):can rapidly oscillate
but always remains small

18



Linear perturbation)

= U+ HE
Source orbit for HY ——h‘”u u,

int

IS approximated by the osculating geodesic orbit:

josc(z-o;z-):j(%:o) osc(TO’T) W (TO)+a) )(‘]_(fo))(T_TO)
We decompose EOM as

dJ, _ [oHE aw* oy [ oHY
dr <aw> d—rzm(o)(J)+< a,
doy,) __oHy |, [oHy doWy _ oHy _ [ oHyy
dr ow” ow” dr &, aJ,

O sy
{5Ja S

for generic orbits, but such a treatment is too native especially
when we discuss some limiting cases, such as the circular limit,
equatorial limit, and ISCO limit.

< . /aJ “> } can be erased by the choice of gauge

19



Summary of the results obtained in arXiv:1612.02504)
The conservative self-force can be described by the effective Hamiltonian
H=HO () 1, 0)
1

Ho == (M) =5 (Con (4 (71,27 () ()2 ()

We can show the presence of a gauge in which

A<a)a>. 1 0Hw [ oHY 0
T2 0, &, ) |

The gauge transformation is constrained.

g 2 (0) p
SyA 0" )= =5, P | VTR 55 =9 53, =M75,3,
a, ) 083,00, 0]

a

gauge invariance of o
o, =-15) 0°6,=0)> J5A(0)=1], aaj) 5,0, =0"5,3,=0
But one can show from the beginning «
0 1

3,80 =3, 2= HO ()42 H, (3) [ 3,07 =2(H® (3) + H,, (3)) +(-1)
oJ 2

(2

2) WhendetM” =0 = *,,M“ =0 £ «,5,A(0")=x,M?5J,=0
But KaA<a)a> =0 can be proven, although the proof is more involveg.

0




Uniqueness of the effective Hamiltonian

Effective Hamiltonian that depends only on J is uniquely given by

WzH(O)(J)+%7{im(J)

if we require the scaling: #,, (1) = A*H,, (J)-
Here, the gauge dependence of J is allowed.

Special care is required for some limiting cases:

{‘]r —0 —> Nhew gauge invariant relation{Jr =0

J,—0 J,=0
5rmin — armin 5‘](1 < 0O |:> armin min 5"]05 -0
8J o,/ |ad,

All the components which cannot be changed by gauge
transformations can be shown to vanish from the beginning.
(Proof for @, — 0 is given in our paper only for circular cases. )

o, — 0 marginally stable orbits
or

o
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Linear perturbation)

= U+ HE
Source orbit for HY ——h‘”u u,

int

IS approximated by the osculating geodesic orbit:

josc(z-o;z-) = j(%‘0) osc (TO’T) W (TO) + Qa) (‘J_(fo))(z- - z-O)
We decompose EOM as

dj,  [oH" dw* 7. | OHix
o in —:Qa J + int
dr <8Wa > dz (O)( ) < o,
do3® __oHl)  [oHl) dowy _oHY [oH
dr ow* \ ow* de 83, \ad,

We choose the gauge such that
{53 =0, s =0, (oHW/037) =0, /2) }

jl> dJ_a _ oH |(nt) dw® B aﬂeﬁ (J_)
dr ow* [/, dr A,




Second order perturbation)
H =HY+HZ ...

int int

(

Source for Hinzt) =—h{»u U, has two contributions:

2) First order deviation of the source orbit from the osculating orbit

d‘]“>(r—r0)+---

dr

MAwﬂ:L@}E?@nﬁﬁﬁu<

o, /dd
AW (7,;7) == W*(7) —W* (ro;f)zl (°)< ﬂ> (T—TO)2+"‘

2 0], \dr
dJ, __oHy oHg™ [ o s 0 |oHy
dr =~ oW oWt Aﬁaﬂ“ VW | owe
8 (s)

differentiation with respect to the source orbit

T HY H (2:hh) @)
d‘]a — 0 |2t _ 0 mta . AJﬂ 0 -I-AWﬂ 0 aHlnt
dz ow osc ow 0s 0J g) 0W(ﬂ5) ow*

C
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Drastic simplification may occur

From here on | just give a highly speculative argument.

dJ, __oHy
dr ow*
o 3pt graviton
P2 vertex
¢ R
retarded

/‘ propagator
particle
trajectory

I
3 oW

awa

ini

Second order
dissipative part

radiative
propagator

awa

0

= Graviton 2-loop

0
awa
+2

symmetric
propagator

0
aWa

24



N g

rad
_ J‘dTJ.dT'J.dT”J.dA'X'
0 » ' ' ' ' "
Sym 8 oW Vxl',xé,XéG(rad) (X’ Xl) x=y(r) G(Sym) (X2 "/ (T ))G(Sym) (X3’ 4 (T )) X=X =Xg=X'
ym

Second order source must satisfy conservation T, =0 as a whole

v (particle) _ v ~[2]
:> v Tupv =V Guv(h(sym)’ h(sym))
necessary deviation from geodesic comes from
symmetric contribution only.

g rad g
oW

rad

(04

a , , 8 '
- [ 107095 () 5 o (04

ym rad
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Summary

The "flux-balance formulae" that determine the averaged
evolution of energy, angular momentum and Carter constant
In terms of the averaged asymptotic partial wave fluxes for

EMRIs in Kerr spacetime were first derived ~15 years ago.
(Sago et al. 2005)

We here gave a new derivation of the flux formulae based
on Hamiltonian dynamics of a self-forced particle motion
using action-angle variables, which is much simpler than the
previous one, and applies to the resonant inspirals without
any complication.

The conservative effect of the first order perturbation can be
encapsulated in the effective Hamiltonian.

Formal discussion may provide some insight into the

simplification of the next leading order calculation.
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