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Finite size effects in 
secondary – what to 
include?



Primary mass: 𝑀
Bg variability length: 

𝑅c ∼  𝑟3 𝑀

Secondary mass: 𝜇
Secondary size: 𝑅
For black holes, neutron 

stars 𝑅 = few 𝜇
For white dw., brown dw., 

main sequence 𝑅 ≫ 𝜇!!

Self-force – powers of  𝜇 𝑅c
Finite-size – powers of  𝑅 𝑅c

(„Finite-time“ – powers of  𝑡? 𝑇orb ∼ 𝑡?/𝑅c)



In principle

Infinite number of oscillation 

modes,

infinite number of new 

degrees of freedom,…



In effect

Only a single new 

degree of freedom 

– the orientation of 

the rotation axis!

Rotation

Adiabatic 

deformation 

by tides

Time lag



Practical model
▪ Approximately rigid rotation

Ω𝜇𝜈 , 𝑆𝜇𝜈 = 𝐼 Ω𝜇𝜈 ≈ 2𝜇𝑅2  Ω𝜇𝜈 5

▪ Adiabatic deformation
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▪ Time lag 𝜏lag ∼ 𝜇   𝜈 𝑅

𝑄del.
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[Steinhoff & Puetzfeld 12, Vines+ 15, Feraz-Mello+ 08, Gavrilov & Zharkov 77] 



Actual EOMs
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𝐽𝜈𝜅𝜆𝛾 = −3  𝑥[𝜈𝑄𝜅][𝜆  𝑥𝛾]

With a conservative term:   𝑥𝜈 → −  𝑥𝜈 , Ω𝜇𝜈 → −Ω𝜇𝜈, you get

the same trajectory evolving backwards!

With a dissipative (irreversible) term you get a different

trajectory under reversal!

(Already presupposing certain finer relativistic terms will not matter…)

Note: If 𝑅 ≪ 𝑅c, then either the pole-dipole-quadrupole EOM are enough, or your body is tidally disrupted.



Weighing the contributions
𝛿  𝑥fin.s.
𝛿  𝑥gsf

∼
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[Steinhoff & Puetzfeld 12, Vines+ 15, Feraz-Mello+ 08, Gavrilov & Zharkov 77] 

Spin-

curvature Tidal quadrupole Centrifugal quadrupole

Tidal lag Centrifugal self-lag



Limits on tidal dissipation
▪ Always conserved (leaving out 𝑂 𝑆2, 𝑄 , heat in the

expressions): 

𝐸tot = −𝜇𝑢𝑡 +
1

2
𝜉𝜇;𝜈
𝑡
𝑆𝜇𝜈

𝐿tot = 𝜇𝑢𝜑 −
1

2
𝜉𝜇;𝜈
(𝜑)

𝑆𝜇𝜈

𝛿𝐸orb

𝐸orb
∼

𝛿𝐿orb

𝐿orb
≲

𝜇

𝑅c

▪ The real action of tidal dissipation is to transfer angular
momentum between orbit and spin!



TAKEAWAY:
The only finite-size effect we
need to worry about is the
spin-curvature coupling.



Statement of dynamics

▪
𝐷2𝑥𝜇

𝑑𝜏2
= 𝐹gsf

(1,2)𝜇
−

1

2𝜇
𝑅 𝜈𝜅𝜆
𝜇

 𝑥𝜈𝑆𝜅𝜆,
𝐷𝑆𝜇𝜈

𝑑𝜏
= 𝜏gsf

(1)𝜇𝜈

▪ 𝑆𝜇𝜈𝑆𝜅𝜆𝑔𝜇𝜅𝑔𝜈𝜆, 𝑆𝜇𝜈𝑆𝜅𝜆𝜖𝜇𝜈𝜅𝜆 conserved, center-
of-mass constraint 𝑆𝜇𝜈  𝑥𝜈 = 0 as well

▪ When the dust settles, only two dynamical
variables in 𝑆𝜇𝜈 → a single degree of freedom
(canonical momentum + conjugate coordinate)

[Witzany+ 19, Vines+ 15]



A two-timescale decomposition
Geodesic GSF Spin-curvature

Conservative, 

orbit evol.

𝐽o 𝑝, 𝑒, 𝑖 ,
Ωo(𝐽o)

〈𝛿gsf1Ωo〉(𝐽o, 𝐽s)

𝛿gsf1𝑥𝜇
〈𝛿sΩo〉(𝐽o, 𝐽s)

𝛿𝑠𝑥𝜇

Dissipative, orbit 

evol.

 𝐽o gsf1

𝑥geo
𝐽o ,

𝛿  𝐽o gsf1
𝛿gsf1𝑥 𝐽o ,

 𝐽o gsf2

𝑥geo
𝐽o

𝛿  𝐽o gsf1
𝛿s𝑥 𝐽o ,

𝛿  𝐽o gsf1
Sp.source

𝐽o

Conservative, spin 

evol.

𝐽s 𝑝, 𝑒, 𝑖, 𝑆
𝜇𝜈 ,

Ωs(𝐽o, 𝐽s)
negligible negligible

Dissipative, spin 

evol.

 𝐽s gsf1

𝑥geo
𝐽o

(Referring to the two-timescale formalism of [Hinderer & Flanagan 08])
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𝐽o

This talk [Witzany 19], Next talk of Chris Kavanagh



Existing results

▪ 𝛿sΩo 𝐽o, 𝐽s , 𝛿  𝐽o gsf1
𝛿s𝑥 𝐽o : [Huerta & Gair 11, Huerta+ 

12, Burko & Khanna 15, Ruangsri+ 16, Warburton+ 

17]

▪ 𝛿  𝐽o gsf1
𝛿s𝑥 𝐽o , 𝛿  𝐽o gsf1

Sp.source
𝐽o : [Harms+ 16, Lukes-

Gerakopoulos+ 17]

▪ 𝐽s 𝑝, 𝑒, 𝑖, 𝑆
𝜇𝜈 , Ωs(𝐽o, 𝐽s): [Marck 83, van de Meent 19]



Spin evolution
▪ Essentially solving parallel transport along geodesics in Kerr

▪ Start with Killing-Yano tensor 𝑌𝜇𝜈 = −𝑌𝜇𝜈 , 𝑌𝜇𝜈;𝜅 = −𝑌𝜇𝜅;𝜈, take geodesic

𝑢𝑔𝑒𝑜
𝜇

, 𝑌 𝜈
𝜇
𝑢𝑔𝑒𝑜
𝜈 an „angular-momentum vector“, parallel transported!! 

(Length is 𝐾)

▪ Contract 𝑢𝑔𝑒𝑜
𝜇

a few more times with KY tensor, orthogonalize for a 

complete tetrad – the parallel transport wrt this tetrad is separable! [Marck

83, Witzany 19, van de Meent 19]

▪ Take away: Projection of spin 𝑆∥ = 𝑆𝜇𝜈𝑌 𝛾
𝜅 𝑢

𝛾
𝑢𝜆 𝜖𝜇𝜈𝜅𝜆/2 𝐾 conserved, 

rest oscillates (and we know how)



Perturbation on orbit
▪ Hamiltonian formalism 𝐻(𝑥𝜇, 𝑈𝜇 , 𝑆

𝜇𝜈), you can find canonical coordinates if you

choose a tetrad – choose the Marck tetrad

▪ You have Hamiltonian in canonical coordinates 𝐻(𝑞𝑖 , 𝑝𝑖), formulate Hamilton-

Jacobi equation for action 𝑊 𝑞𝑖 , 𝐻 𝑞𝑖 ,𝑊,𝑞𝑖 = 𝐻0, geodesic solution known

perturb by spin, is separable

▪ Result: separation constants 𝐾𝑠𝑜 𝐸𝑠𝑜, 𝐿𝑠𝑜 = 𝐾𝑔, 𝐸𝑔, 𝐿𝑔 + 𝑂 𝑆 , and 𝑆∥

▪ EOM reduced to half, but not separable 𝐴 = 𝑟, 𝜗

𝑑𝐴

𝑑𝜆
= ± 𝑤𝐴 𝐴,𝐾𝑠𝑜 𝐸𝑠𝑜, 𝐿𝑠𝑜, 𝑆∥ −

1

𝜇
𝑒0𝐴𝜔𝜇𝜈𝐴𝑆

𝜇𝜈

(For gory details see [Witzany 19])



Shifts to frequencies
▪ Separability of the unperturbed problem allows for a 

complete computation of fundamental frequency shifts by 

a set of closed-form quadratures!

▪ All of the shifts depend only

linearly on 𝑆∥

▪ Relative frequency shift ~ few 𝑆∥, 

as per usual diverges at ISCO

(For gory details see [Witzany 19])



TAKEAWAY:
Frequency shifts due to spin 
can be computed, you only
need to care about parallel
component of spin



NOW:
Resonances, chaos



No strong resonances!
Consider perturbed action-angle coordinates:

 𝐽𝛼 = 𝜖  𝐺𝛼(𝐽) + 𝜖𝐺𝛼
osc(𝐽, 𝜓)

 𝜓𝛼 = Ω𝛼 𝐽 + 𝜖  𝑔𝛼(𝐽) + 𝜖𝑔𝛼
osc(𝐽, 𝜓)

The thickness of resonant layer ∼ 𝜖𝐺𝛼
osc when it hits∼ 𝑒

𝑖𝑘𝛼𝜓𝛼 and 

𝑘𝛼Ω𝛼 = 0

The perturbative solution of Ham.-Jac. equation implies vars 𝐼, 𝜙

 𝐼𝛼 = 0 + 𝑂(𝑆^2)

 𝜙𝛼 = Ω𝛼 𝐼 + 𝑆∥  𝑔′𝛼 𝐼 + 𝑆𝑔′
𝛼
osc

(𝐼, 𝜙, 𝑆∥/𝑆, 𝜒s)

Hence, thickness of resonant layer scales only as 𝑆2 = 𝑆

(For gory details see my notes from the plane here)



Numerical evidence
Ondřej Zelenka

Georgios

Lukes-Gerakopoulos

(To be published soon, ask me for pdf of Ondřej’s Master thesis)



Hunting for chaos
Ondřej ZelenkaTake a time-series of any

dynamical variable from a 
given system and observe
its recurrences – you are 
able to discern regular from
chaotic.

- Can you do this for GW 
strain?

- For a weakly chaotic
orbit for mass ratio 10−4

this is now limited by the
noise in the Teukolsky
solver

Ondřej Zelenka
Georgios

Lukes-Gerakopoulos

[Lukes-Gerakopoulos & Kopáček 17, Zelenka+ 19]



Conclusions

▪ You need only spin-curvature from finite-size effects in 
compact-object EMRIs

▪ Evolution of spin is analytically solvable at the accuracy
we need, so is the average influence on the orbit

▪ Spin-orbit resonances are not strong enough, chaos as 
well

▪ You need to compute more for post-adiabatic EMRIs, 
specifically immediate perturbations of orbit (→fluxes), 
and  𝑆∥ gsf1

This talk was supported by Grant No. GACR-17-06962Y of the Czech Science Foundation


