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Figure: Credits, Maarten van de Meent
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Studying the central black hole
e Complete knowledge of the behavior of the system

¢ High precision calculations A. Pound et al. “Second-Order Self-Force Calculation of
Gravitational Binding Energy in Compact Binaries.” Physical Review Letters 124.2 (2020)

e Comparison between different parameters definitions e.g. mass, angular momentum

Figure: Credits, NASA
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Intrinsic metric and surface area

The horizon surface is parametrized by

x?{ = (Uer’eA) (1)

The second order expansion for the horizon radius is:

rg = 2M + erM (v, 04) + - (v, 04) (2)

The intrinsic metric on the horizon is given by
¥4B = (gap + hap)e® ¢’ . 3)

® gop — The Schwarzschild metric in Eddington-Finkelstein coordinates
® hap = ehfjﬁ) + ezhfg — The perturbation metric

«a
« _8$H

A= Fga — The tangent vectors to the horizon

® e

We use capital Latin letters A, B, ... for the (6, ¢) components
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Intrinsic metric and surface area

The horizon area is given by the integral

A= /ﬁ 6?7 (4)
Min = % (5)

The second order expansion for the area is:
A= 4M2{47r + eg/]\ﬁ (2R + 87 (D) 0] 4 8% [Var(2hird® + 8Mr(2) 00) (6)

2 2
1 (1) tm % Im (1) bm = 1 A Q) im A5 L () im2
+ > @I by T 2XGr D Iy DT gl () m2 THTELC S v LA )]}

im

e The fields (h™" '™+ ™ Yin eq.(6) are the coefficients of the tensorial spherical harmonics
expansion

e XN =l(l+1)and ;= (- DI{I+1)(1+2)
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Event horizon and apparent horizon

The event horizon is a congruence of null geodesics with £* as tangent vector

K%y = 0 (7)

¢ In the late future the spacetime will be stationary — Trace back in time the location of
the event horizon

On the apparent horizon the expansion is zero

with £ a null vector field normal to the surface and pointing outward

Remark

In the exact Schwarzschild manifold the event horizon and the apparent horizon are the
same surface: a two-sphere of radius 2M
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Horizon location

How to determine the horizon location?

Construct a basis {k“,n“, e 4} on the perturbed spacetime
Use the specific relations for £ to find the horizon equations

® k%k, = 0 for the event horizon
® ¢ = 0 for the apparent horizon

Evaluate every expression up to second order in e
(every expression is evaluated at » = 2M)

Expand all the quantities in tensorial spherical harmonics
Solve the equations for the perturbed horizons locations
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The first order equation for the event horizon location is:

()lm

m T
B — Eh— 420, P& —g 9)

For the second order (I = m = 0) we get:

00 (1) tm (1) Im = A2 h(l)lm (1) lm *
(2) 0 frgn (2) 00 by oM, T _ p) tmp (1) b
4T By + 2y 00 4 § ST e Py " hay (10)
1)1 )i
e P Lo R o [

_ _ (1) tm = (1) Im ) _
100 107 e ot o ) 0

These are differential equations of the form:
ri " () =AM 0, "™ (v) = F™(v) (11)
with teleological solutions

(n) Im 1 oo — (v =) lmy, 1 / (n) Im
Tey (V) = Ny e F(0")dv' + 73, kerr (12)
v
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Apparent horizon

For the apparent horizon we can explicitly solve the equations.
The first order gives:

1) Im 1
7"(1) Im _ 2M hgw) - )‘%hgr)v — 0y ht(ral)ce
AH 1423

The second order leads to a very long expression. We show only the general structure

Piiace. Z D ) m] (14)

The linear terms are given by the second order perturbatlons, the quadratic terms are
products of first order perturbations

P00 _ g @00
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Two-timescale expansion

We introduce a map between the manifold with coordinates (v, r, GA) and a manifold with
coordinates (ev, p(v, €),r, #) such that:

) m () = 7 I (e (v, €)) (15)

® 7 = ev slow-time — radiation-reaction timescale
® o(v,e) fast-time — orbital timescale

* Assumption: the field is periodic in ¢ with frequency Z—f = w (and bounded in v)

We expand 7™ ™ in Fourier series

)M (en, (v, €) Z i) lm Je~ ke (16)

These relationships hold for every field in the event horizon (and apparent horizon) equations
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Two-timescale expansion

Specialize to systems that evolve to have zero angular momentum and total mass M at late
times
* Apply the two-timescale expansion to the event horizon equations

At first order we get

gy im _ 2M (hos )i (i) ™) (17)
Enk T 1 4 4ikMw

To make a comparison, the same expansion could be written for the apparent horizon solutions.

The first order gives

7 Im 7 lm . 7 lm
i 2M (RS = N3 (RN A+ ikwo (R )
TAn k = 2 (18)

If we set ] = m = k& = 0 at first order we obtain the same result for both the horizons
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Two-timescale expansion

Let us apply the two-timescale expansion to the second order equation for the event horizon and
to the apparent horizon solution. The results differ by many terms. However, if we keep only the
ko =1 = m = 0 terms of the sum, we get the following results:

r(7(1) 00
M(hin ™)) 2M2(RSY ) ym0) 0 (RS ) (ky—0) (19)
7 + NG + >0

kolm>0

7200 = M (R 90)_g + 8 9, (W) ) s +

R . M(h“) 0042 ZMQ(;L(D oo) 9 (i‘l(l) oo)
~(2) 00 . 1) 00 (k2=0) VU (k2=0) Ur\lovv (k2=0)
FRLL = 2M (B2 Yo — D (W) im0y + 7 + 7z + 3 [Jaxn (20)

kalm>0

e Equations (19) and (20) differ by a slow-time derivative term and terms in the sum with
kQ, l, m >0

* We have a local solution for the event horizon
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Numerical results

log;o(AM?;,/M)

-4
e The contribution is entirely given by the -6
v-derivative terms
e The quadratic terms gives a -
contribution of order 10~ o
¢ The maximum difference is ~ 10~5M,,
assuming a mass ratio with riM
M ~10°Mg and m ~ 10Mg 0 > oo

Figure: AMi, vs. r . Data from Niels Warburton and
Barry Wardell computations for quasi-circular orbits.
Cut-off value r ~ 6.01
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Conclusions

We obtained
e First order perturbation for event horizon and apparent horizon location

e Second order perturbation for event horizon and apparent horizon location (only for
l=m=0)

* First and second order perturbations for the area (for both the horizons)

* We checked the consistency of the equations with Schwarzschild, Kerr and Vaidya spacetime

Future prospects
e Compute the gauge transformations up to the second order
e Derive second order perturbations for the angular momentum

e Study and compare the results for different mass definitions
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