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The EMRI problem

● Waveforms are the forward models of GW science: Parameters ↦ observables
● Data analysis uses waveforms to find inverse solutions: Data ↦ parameters
● Both are harder for EMRIs (+ astrophysics, but let’s not go into that here)



The EMRI problem

● Waveforms are the forward models of GW science: Parameters ↦ observables
● Data analysis uses waveforms to find inverse solutions: Data ↦ parameters
● Both are harder for EMRIs (+ astrophysics, but let’s not go into that here)
● Difficulty 1: Accuracy

○ EMRIs are strong-field, high-SNR sources that require accurate modeling to find & characterize
○ Phasing accurate to post-1-adiabatic order should be enough, but we are not there yet

● Difficulty 2: Efficiency
○ EMRI signals are long-lived with rich harmonic content; they are costly to model & analyze
○ Stochastic algorithms in data analysis require bulk generation of waveforms (at least billions)

● Difficulty 3: Extensiveness
○ Even the “leading-order” space of EMRI orbits is gargantuan in terms of information volume
○ Waveforms are only half the battle: detector response encodes important extrinsic effects



A brief definition of terms

● Waveform model:
○ Accurate (fully relativistic)
○ Not necessarily efficient & not necessarily extensive

● Template model:
○ Not necessarily accurate
○ Efficient & extensive

● Kludge models (AK, NK, AAK) are template models:
○ Not accurate (semi-relativistic)
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● Template model:
○ Not necessarily accurate
○ Efficient & extensive

● Kludge models (AK, NK, AAK) are template models:
○ Not accurate (semi-relativistic)
○ Efficient & extensive

● The model we are introducing is accurate & efficient, but not yet extensive
● What should we call accurate, efficient & extensive models?

○ I proposed taking back the term “surrogate” last year, but it is a bit too loaded now
○ More on this later



A waveform model for LISA data analysis

● Standard modular description
○ Angular & frequency-based decomposition
○ Osculating geodesics

● Generic Kerr orbits
○ Need schemes to evolve through resonances
○ Need secondary spin, mass/spin evolution, etc.

● Angular dependence
○ Spheroidal harmonics with spin weight -2

● Inspiral trajectory (+ mode phasing)
○ Post-1-adiabatic order

● Mode amplitudes
○ Adiabatic order



A waveform model for LISA data analysis (so far)

● Standard modular description
○ Angular & frequency-based decomposition
○ Osculating geodesics

● Eccentric Schwarzschild orbits
○ Neglect resonances
○ Neglect secondary spin, mass/spin evolution, etc.

● Angular dependence
○ Spherical harmonics with spin weight -2

● Inspiral trajectory (+ mode phasing)
○ Adiabatic order

● Mode amplitudes
○ Adiabatic order



● Options for trajectory model
○ PN flux-based (less likely for actual analysis)
○ Teukolsky flux-based (OK for detection)
○ Two-timescale framework
○ NIT (van de Meent & Warburton, 2018)

Inspiral trajectory

van de Meent & Warburton (2018)



● Options for trajectory model
○ PN flux-based (less likely for actual analysis)
○ Teukolsky flux-based (OK for detection)
○ Two-timescale framework
○ NIT (van de Meent & Warburton, 2018)

● Current model: Teukolsky flux-based
○ Numerical data: 10-12 fractional error on

amplitudes, 1640 points in geodesic space
○ 8th-order Runge-Kutta method
○ Cubic-spline interpolation

Inspiral trajectory



● Options for amplitude model
○ PN amplitudes (partial coverage)
○ Interpolate Teukolsky amplitudes (local)
○ Fit Teukolsky amplitudes (global)

● Are adiabatic amplitudes OK?

Mode amplitudes
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● Options for amplitude model
○ PN amplitudes (partial coverage)
○ Interpolate Teukolsky amplitudes (local)
○ Fit Teukolsky amplitudes (global)

● Are adiabatic amplitudes OK?
○ Yes, probably

● Interpolation/fitting is difficult though
○ High-dimensional mode space
○ Kerr: > 2-dimensional geodesic space
○ Many evaluations along trajectory

Mode amplitudes



● Current model: Neural-network fit
○ ROMAN (Chua, Galley & Vallisneri, 2019)
○ Combination of ROM & deep learning
○ Alternative to surrogate + ROQ framework

Mode amplitudes
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● Current model: Neural-network fit
○ ROMAN (Chua, Galley & Vallisneri, 2019)
○ Combination of ROM & deep learning
○ Alternative to surrogate + ROQ framework

● Construct reduced basis for mode set
○ Numerical data: Same as trajectory model
○ Order reduction: 7686 to 198

● Train neural network on reduced map
○ Network: Multilayer perceptron, 20 layers
○ Test domain: Initial eccentricities up to 0.7,

plunge eccentricities up to 0.5,
separations from LSO + 0.2M to LSO + 10M

○ Distribution error: 1 - cos(angle)

Mode amplitudes



● Why not apply ROM directly to waveforms?
○ Circular Schwarzschild IMRI: 1 parameter, < 200 cycles, 22 modes (Rifat et al. 2020)
○ A usable EMRI surrogate is unlikely to cover more than a miniscule patch of parameter space
○ Accuracy is also an issue: Even best NR surrogates have maximal mismatches > 10-3

Mode amplitudes

Blackman et al. (2017)



● GPU acceleration in GW modeling
○ MBH waveforms (Katz et al. 2020)
○ Kludge waveforms (EMRI Kludge Suite)

● Neural networks are highly parallelizable
● Speed: Milliseconds to < 1 second

○ Analysis-length waveforms (1 year at 0.1 Hz)
○ Full harmonic content (all relevant modes)

GPU implementation



● GPU acceleration in GW modeling
○ MBH waveforms (Katz et al. 2020)
○ Kludge waveforms (EMRI Kludge Suite)

● Neural networks are highly parallelizable
● Speed: Milliseconds to < 1 second

○ Analysis-length waveforms (1 year at 0.1 Hz)
○ Full harmonic content (all relevant modes)

● Accuracy: Maximal mismatch < 4 × 10-4

○ Compared to slow fiducial waveform with
dense interpolation (about 1 hour on 10 cores)

○ Enough to estimate parameters without bias
for most signals (up to around SNR 100)

GPU implementation



● Improve extensiveness (source-side)
○ Eccentric equatorial Kerr: Add spin
○ Partial post-adiabatic trajectory: 1st-order SF
○ Incorporate resonance schemes

● Other representations
○ Frequency domain: Higher-order SPA
○ Time-frequency domain: STFT

● Improve extensiveness (detector-side)
○ Integrate with LISA response models

Strategies for future work

N. Douillet
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● EMRI waveforms for LISA data analysis must be accurate, efficient & extensive
● We introduce the first fast & fully relativistic model for eccentric Schwarzschild
● Our framework is designed to scale well to the full EMRI analysis problem


