Manphppphanphpphanphphanphanph

Rapid generation of fully relativistic EMRI waveforms for data analysis

Alvin Chua (+ Michael Katz, Niels Warburton, Scott Hughes) JPL-Caltech

23rd Capra Meeting (virtual) 22 June 2020

Jet Propulsion Laboratory California Institute of Technology

The EMRI problem

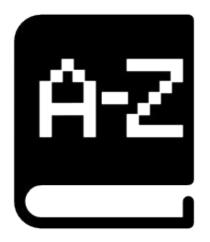
- Waveforms are the forward models of GW science: Parameters → observables
- Data analysis uses waveforms to find inverse solutions: Data → parameters
- Both are harder for EMRIs (+ astrophysics, but let's not go into that here)

The EMRI problem

- Waveforms are the forward models of GW science: Parameters → observables
- Data analysis uses waveforms to find inverse solutions: Data → parameters
- Both are harder for EMRIs (+ astrophysics, but let's not go into that here)
- Difficulty 1: Accuracy
 - EMRIs are strong-field, high-SNR sources that require accurate modeling to find & characterize
 - Phasing accurate to post-1-adiabatic order should be enough, but we are not there yet
- Difficulty 2: Efficiency
 - EMRI signals are long-lived with rich harmonic content; they are costly to model & analyze
 - Stochastic algorithms in data analysis require bulk generation of waveforms (at least billions)
- Difficulty 3: Extensiveness
 - Even the "leading-order" space of EMRI orbits is gargantuan in terms of information volume
 - Waveforms are only half the battle: detector response encodes important extrinsic effects

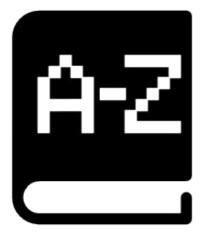
A brief definition of terms

- Waveform model:
 - Accurate (fully relativistic)
 - Not necessarily efficient & not necessarily extensive
- Template model:
 - Not necessarily accurate
 - Efficient & extensive
- Kludge models (AK, NK, AAK) are template models:
 - Not accurate (semi-relativistic)
 - Efficient & extensive



A brief definition of terms

- Waveform model:
 - Accurate (fully relativistic)
 - Not necessarily efficient & not necessarily extensive
- Template model:
 - Not necessarily accurate
 - Efficient & extensive
- Kludge models (AK, NK, AAK) are template models:
 - Not accurate (semi-relativistic)
 - Efficient & extensive
- The model we are introducing is accurate & efficient, but not yet extensive
- What should we call accurate, efficient & extensive models?
 - \circ ~ I proposed taking back the term "surrogate" last year, but it is a bit too loaded now
 - More on this later



A waveform model for LISA data analysis

- Standard modular description
 - Angular & frequency-based decomposition
 - Osculating geodesics
- Generic Kerr orbits
 - Need schemes to evolve through resonances
 - Need secondary spin, mass/spin evolution, etc.
- Angular dependence
 - \circ Spheroidal harmonics with spin weight -2
- Inspiral trajectory (+ mode phasing)
 - Post-1-adiabatic order
- Mode amplitudes
 - Adiabatic order

$$h(t) = \frac{1}{r} \sum_{lmkn} A_{lmkn}(t) e^{-i\Phi_{mkn}(t)} V_{lmkn}(\theta, \phi)$$

 $G(t) \equiv (p(t), e(t), \iota(t))$

$$V_{lmkn}(\theta,\phi) = {}_{-2}S_{lmkn}(\theta)e^{im\phi}$$

$$\Phi_{mkn}(t) = \text{init.} + \int_{t_0}^t dt' \,\omega_{mkn}(G(t')) + \text{osc.}$$

$$A_{lmkn}(t) = -\frac{2Z_{lmkn}^{\infty}(G(t))}{\omega_{mkn}^2(G(t))}$$

A waveform model for LISA data analysis (so far)

- Standard modular description
 - Angular & frequency-based decomposition
 - Osculating geodesics
- Eccentric Schwarzschild orbits
 - Neglect resonances
 - Neglect secondary spin, mass/spin evolution, etc.
- Angular dependence
 - \circ Spherical harmonics with spin weight -2
- Inspiral trajectory (+ mode phasing)
 - Adiabatic order
- Mode amplitudes
 - Adiabatic order

$$h(t) = \frac{1}{r} \sum_{lmn} A_{lmn}(t) e^{-i\Phi_{mn}(t)} V_{lm}(\theta, \phi)$$

 $G(t)\equiv (p(t),e(t))$

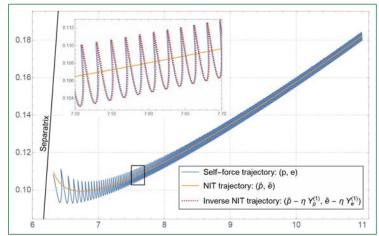
 $V_{lm}(\theta,\phi) = {}_{-2}Y_{lm}(\theta)e^{im\phi}$

$$\Phi_{mn}(t) = \text{init.} + \int_{t_0}^t dt' \,\omega_{mn}(G(t'))$$

$$A_{lmn}(t) = -\frac{2Z_{lmn}^{\infty}(G(t))}{\omega_{mn}^2(G(t))}$$

Inspiral trajectory

- Options for trajectory model
 - PN flux-based (less likely for actual analysis)
 - Teukolsky flux-based (OK for detection)
 - Two-timescale framework
 - NIT (van de Meent & Warburton, 2018)



van de Meent & Warburton (2018)

Inspiral trajectory

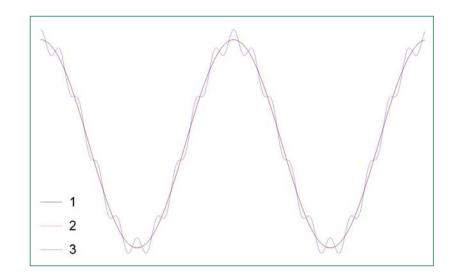
- Options for trajectory model
 - PN flux-based (less likely for actual analysis)
 - Teukolsky flux-based (OK for detection)
 - Two-timescale framework
 - NIT (van de Meent & Warburton, 2018)

• Current model: Teukolsky flux-based

- Numerical data: 10⁻¹² fractional error on amplitudes, 1640 points in geodesic space
- 8th-order Runge-Kutta method
- Cubic-spline interpolation

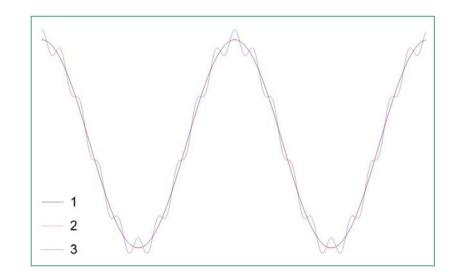
 $(p_0, e_0, \eta) \mapsto (G(t), \Phi_{mn}(t))$

- Options for amplitude model
 - PN amplitudes (partial coverage)
 - Interpolate Teukolsky amplitudes (local)
 - Fit Teukolsky amplitudes (global)
- Are adiabatic amplitudes OK?



1 : $\cos(\omega t)$, $T = 10^3$ cycles 2 : $\cos((1 + 10^{-4})\omega t)$ 3 : $\cos(\omega t) + 10^{-1}\cos(100\omega t)$

- Options for amplitude model
 - PN amplitudes (partial coverage)
 - Interpolate Teukolsky amplitudes (local)
 - Fit Teukolsky amplitudes (global)
- Are adiabatic amplitudes OK?
 - Yes, probably

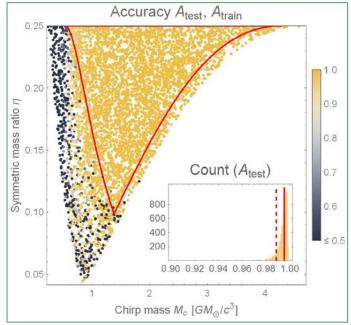


1 : $\cos(\omega t)$, $T = 10^3$ cycles 2 : $\cos((1+10^{-4})\omega t)$ over(1,2) = 0.9363 : $\cos(\omega t) + 10^{-1}\cos(100\omega t)$ over(1,3) = 0.995

- Options for amplitude model
 - PN amplitudes (partial coverage)
 - Interpolate Teukolsky amplitudes (local)
 - Fit Teukolsky amplitudes (global)
- Are adiabatic amplitudes OK?
 - Yes, probably
- Interpolation/fitting is difficult though
 - High-dimensional mode space
 - Kerr: > 2-dimensional geodesic space
 - Many evaluations along trajectory

 $2 \le l \le 10, \ m \le l, \ |n| \le 30$ $(p, e) \mapsto \operatorname{vec}(A_{lmn}) \in \mathbb{C}^{3843} \cong \mathbb{R}^{7686}$

- Current model: Neural-network fit
 - ROMAN (Chua, Galley & Vallisneri, 2019)
 - Combination of ROM & deep learning
 - Alternative to surrogate + ROQ framework



Chua, Galley & Vallisneri (2019)

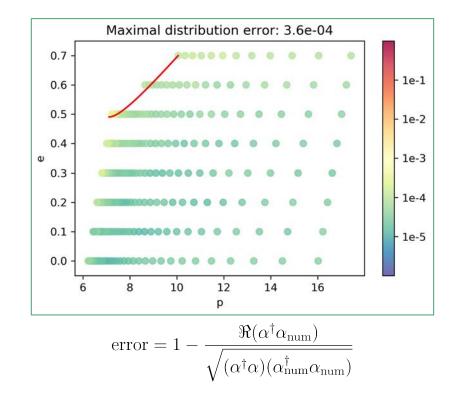
- Current model: Neural-network fit
 - ROMAN (Chua, Galley & Vallisneri, 2019)
 - Combination of ROM & deep learning
 - Alternative to surrogate + ROQ framework
- Construct reduced basis for mode set
 - Numerical data: Same as trajectory model
 - Order reduction: 7686 to 198

$$\operatorname{vec}(A_{lmn})(p,e) = \sum_{i} \alpha_{i}(p,e) \mathbf{e}_{i} \equiv \alpha(p,e)$$
$$(p,e) \mapsto \alpha \in \mathbb{C}^{99} \cong \mathbb{R}^{198}$$

- Current model: Neural-network fit
 - ROMAN (Chua, Galley & Vallisneri, 2019)
 - Combination of ROM & deep learning
 - Alternative to surrogate + ROQ framework
- Construct reduced basis for mode set
 - Numerical data: Same as trajectory model
 - Order reduction: 7686 to 198

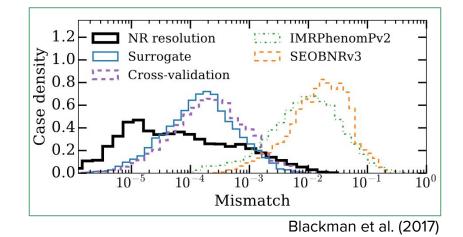
Train neural network on reduced map

- Network: Multilayer perceptron, 20 layers
- Test domain: Initial eccentricities up to 0.7, plunge eccentricities up to 0.5, separations from LSO + 0.2M to LSO + 10M
- Distribution error: 1 cos(angle)



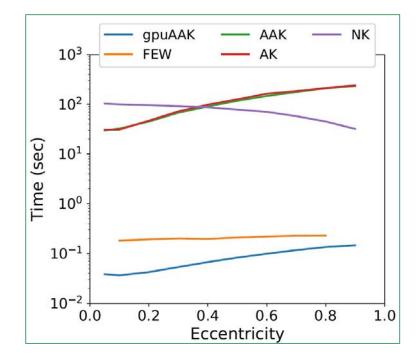
• Why not apply ROM directly to waveforms?

- Circular Schwarzschild IMRI: 1 parameter, < 200 cycles, 22 modes (Rifat et al. 2020)
- A usable EMRI surrogate is unlikely to cover more than a miniscule patch of parameter space
- \circ Accuracy is also an issue: Even best NR surrogates have maximal mismatches > 10⁻³



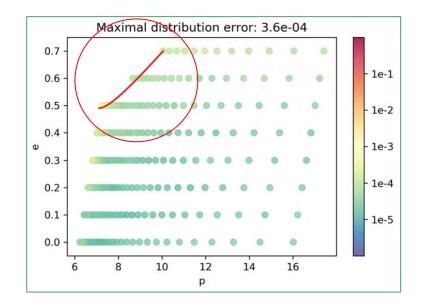
GPU implementation

- GPU acceleration in GW modeling
 - MBH waveforms (Katz et al. 2020)
 - Kludge waveforms (EMRI Kludge Suite)
- Neural networks are highly parallelizable
- Speed: Milliseconds to < 1 second
 - Analysis-length waveforms (1 year at 0.1 Hz)
 - Full harmonic content (all relevant modes)



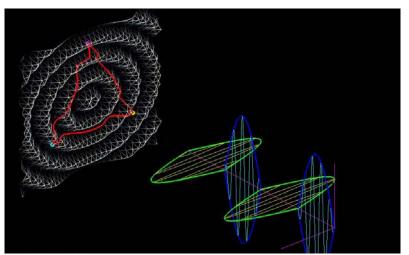
GPU implementation

- GPU acceleration in GW modeling
 - MBH waveforms (Katz et al. 2020)
 - Kludge waveforms (EMRI Kludge Suite)
- Neural networks are highly parallelizable
- Speed: Milliseconds to < 1 second
 - Analysis-length waveforms (1 year at 0.1 Hz)
 - Full harmonic content (all relevant modes)
- Accuracy: Maximal mismatch $< 4 \times 10^{-4}$
 - Compared to slow fiducial waveform with dense interpolation (about 1 hour on 10 cores)
 - Enough to estimate parameters without bias for most signals (up to around SNR 100)



Strategies for future work

- Improve extensiveness (source-side)
 - Eccentric equatorial Kerr: Add spin
 - Partial post-adiabatic trajectory: 1st-order SF
 - Incorporate resonance schemes
- Other representations
 - Frequency domain: Higher-order SPA
 - Time-frequency domain: STFT
- Improve extensiveness (detector-side)
 - Integrate with LISA response models



Summary & references

- EMRI waveforms for LISA data analysis must be accurate, efficient & extensive
- We introduce the first fast & fully relativistic model for eccentric Schwarzschild
- Our framework is designed to scale well to the full EMRI analysis problem
- A. J. K. Chua, M. L. Katz, N. Warburton & S. A. Hughes, Rapid generation of fully relativistic extreme-mass-ratio-inspiral waveform templates for LISA data analysis, in prep.
- M. L. Katz, S. Marsat, A. J. K. Chua, S. Babak & S. L. Larson, GPU-accelerated massive black hole binary parameter estimation with LISA, in rev., arXiv:2005.01827
- A. J. K. Chua, C. R. Galley & M. Vallisneri, Reduced-order modeling with artificial neurons for gravitational-wave inference, Phys. Rev. Lett. 122, 211101 (2019).
- M. van de Meent & N. Warburton, Fast self-forced inspirals, Class. Quantum. Grav. 35, 144003 (2018).