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Basic Goals

Aims to develop time domain evolution code for gravitational
self-force using the effective source approach

Builds on Peter Diener’s scalar evolution code

Calculated in the Lorenz gauge

Uses tortoise coordinates around the source

Transitions to hyperboloidal coordinates in inner and outer regions
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Derivation of Evolution equations

Use first order perturbation equations for the trace-reversed metric in
the Lorenz gauge:

�h̄αβ + 2Rµα
ν
β h̄µν = −16πTαβ

Decompose results into multipole harmonics:

�2d
sc h̄

(i)`m + M
(i)`
(j) h̄(j)`m = − 4πrf

µa(i)`
πT (i)`m

where
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r∗ +

f

4

(
f ′

r
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)
Expressions for the coupling matrix M

(i)`
(j) were originally derived by

Barack & Lousto [1].
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Constraint Damping

Gundlach et al [2] provide a methodology to introduce constraint damping
to the evolution equations. This damping requires adding term to
evolution equations of the form

−κ(tαZβ + tβZα),

where κ is a positive constant, tα is a future-directed time-like vector field,
and Zα = h̄αβ

;β is the Lorenz gauge condition.

The damping requires careful handling at the horizon. I revisit the details
of my choice of damping later.
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Hyperboloidal Slicing

For the hyperboloidal layer from the tortoise coordinate region to I +, I
construct the layer as done by Bernuzzi et al [3]. The following relations
define the coordinate transformation {t, r} → {τ, ρ} for the outer
hyperboloidal layer.

Invariant Killing vector fields: ∂t = ∂τ → τ = t − h(r∗)

Invariant outgoing null rays: t − r∗ = τ − ρ→ dρ
dr∗

= 1− H(ρ)

Compactifying coordinates:
r∗ = ρ

Ω(ρ)
dh
dr∗
≡ H(ρ) = 1− Ω2

Ω−ρΩ′

In this compactification, Ω(ρ) is defined such that
Ω(S+) = 0⇒ r∗(S

+) =∞, where S+ is some positive real number.
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Hyperboloidal Slicing

For the hyperboloidal layer from the tortoise coordinate region to the
horizon, I perform a similar construction as before. The primary difference
is that I preserve the ingoing null rays instead of the outgoing rays. This
amounts to changing the equation

t − r∗ = τ − ρ

to
t + r∗ = τ + ρ

In this compactification, Ω(ρ) is defined such that
Ω(S−) = 0⇒ r∗(S

−) = −∞, where S− is some negative real number.
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Tensor Spherical Harmonic Basis

For this work, I initially used the tensor spherical harmonics from Barack &
Sago [4]. This basis introduces a factor of f in the i = 3 tensor spherical
harmonic of the Barack & Lousto basis [1].

However, I encountered stability issues with the Barack-Sago basis. I
resolve this issue by transforming the h(i) basis. I replace six of the h(i)

with the linear combinations h(1) ± h(2), h(4) ± h(5), and h(8) ± h(9).

For both bases, the coupling matrix in the inner hyperboloidal layer has
singular elements at the horizon. These can be canceled by adding the
constraints to the evolution equations.
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Evolution Stability

Evolution using the Barack-Sago variables was unstable, even with
constraint damping. Evolution with the transformed basis also resulted in
instabilities near the horizon, so I introduced an additional damping term
in the inner hypoboloidal region which successfully stabilized evolution.

Constraint damping coefficient α for evolution equations in the three coordinate
domains. Term with c coefficient is introduced for stability. Exact requirements
for stability are unknown, but c = 100 is sufficient for performed simulations.

i = 1 i = 3 i ∈ 4, 8

Inner Layer: −f ′ −f (1 + H)(1− cH) −f ′(1 + H)(1− cH)
Tortoise layer: −f ′ −f −f ′
Outer layer: −f ′ −f (1− H) −f ′
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Reconstructed Perturbation
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Plot of reconstructed metric perturbation for simulation of ` = 2 modes. The m
modes have been summed over for these plots.
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Reconstructed Perturbation

20 40 60 80 100 120

-8

-6

-4

-2

Log[Abs[h00
�=2]]

20 40 60 80 100 120

-10

-8

-6

-4

-2

Log[Abs[h01
�=2]]

20 40 60 80 100 120

-10

-8

-6

-4

-2

Log[Abs[h11
�=2]]

20 40 60 80 100 120

-8

-6

-4

-2

2

4
Log[Abs[h02

�=2]]

20 40 60 80 100 120

-8

-6

-4

-2

2

Log[Abs[h03
�=2]]

20 40 60 80 100 120

-6

-4

-2

2

4
Log[Abs[h12

�=2]]

20 40 60 80 100 120

-6

-4

-2

2

Log[Abs[h13
�=2]]

20 40 60 80 100 120

-6

-4

-2

2

4

6
Log[Abs[h33

�=2]]

20 40 60 80 100 120

-6

-4

-2

2

4

6

Log[Abs[h34
�=2]]

20 40 60 80 100 120

-6

-4

-2

2

4

6
Log[Abs[h44

�=2]]

Plots truncated to the only show active evolution. While the components in the
{t, r∗} space stabilize to damped sinusoidal behavior, the angular components
have noticeable irregularities.
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QNM Frequencies
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Overlay of simulation data with the analytical solution for h`=2
00 . The analytical

frequencies were generated with Leo Stein’s python code in the Black Hole
Perturbation Toolkit.
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QNM Frequencies

QNM frequencies clearly do not match analytical results

I estimated numerical frequencies by plotting a damped sinusoid over
the data and adjusting frequencies to match

Data is given for two `-modes in the table.

Comparison of numerical and analytical results for frequencies.

Numerical Analytic
` mode ωR ωI ωR ωI

2 0.474 0.077 0.374 0.0890
3 0.66 0.072 0.599 0.0927
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Remaining Hurtles for evolution code

Determine the source of the incorrect QNM frequencies

Restore OpenMP parallelism that is present in the scalar evolution
code

Adapt existing code to interface with gravitational effective source
code

Refine the choice of damping if current method proves insufficient
with effective source
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